Direct Determination of Three PAHs in Drill Cuttings Recycling Products by Solid-Surface 3D Fluorescence Coupled with Chemometrics
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Solid-Surface 3D Fluorescence Measurement
2.4. Chemometric Analysis
3. Results and Discussion
3.1. SSTF Characteristics of Individual PAHs
3.2. Method Development
3.3. Method Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kazamias, G.; Zorpas, A.A. Drill cuttings waste management from oil & gas exploitation industries through end-of-waste criteria in the framework of circular economy strategy. J. Clean. Prod. 2021, 322, 129098. [Google Scholar] [CrossRef]
- Pereira, L.B.; Sad, C.M.S.; da Silva, M.; Corona, R.R.B.; dos Santos, F.D.; Gonçalves, G.R.; Castro, E.V.R.; Filgueiras, P.R.; Lacerda, V. Oil recovery from water-based drilling fluid waste. Fuel 2019, 237, 335–343. [Google Scholar] [CrossRef]
- Al-Doury, M.M.I. Treatment of oily sludge using solvent extraction. Pet. Sci. Technol. 2019, 37, 190–196. [Google Scholar] [CrossRef]
- Kachel-Jakubowska, M.; Matwijczuk, A.; Gagoś, M. Analysis of the physicochemical properties of post-manufacturing waste derived from production of methyl esters from rapeseed oil. Int. Agrophysics 2017, 31, 175–182. [Google Scholar] [CrossRef]
- Matwijczuk, A.; Zając, G.; Kowalski, R.; Kachel-Jakubowska, M.; Gagoś, M. Spectroscopic Studies of the Quality of Fatty Acid Methyl Esters Derived from Waste Cooking Oil. Pol. J. Environ. Stud. 2017, 26, 2643–2650. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Wang, L.a.; Ma, S.; Jiang, J.; Liu, L.; Zhou, Z.; Liu, L.; Wang, X.; Bai, J. Pyrolysis of oil-based drill cuttings from shale gas field: Kinetic, thermodynamic, and product properties. Fuel 2022, 323, 124332. [Google Scholar] [CrossRef]
- Xia, Z.; Yang, H.; Sun, J.; Zhou, Z.; Wang, J.; Zhang, Y. Co-pyrolysis of waste polyvinyl chloride and oil-based drilling cuttings: Pyrolysis process and product characteristics analysis. J. Clean. Prod. 2021, 318, 128521. [Google Scholar] [CrossRef]
- Zhang, A.P.; Li, M.; Lv, P.; Zhu, X.F.; Zhao, L.P.; Zhang, X. Disposal and Reuse of Drilling Solid Waste from a Massive Gas Field. Procedia Environ. Sci. 2016, 31, 577–581. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Q.; Jin, J.Z.; Lin, X.Y.; Xiong, D.M.; Mei, X.D. A study on the oil-based drilling cutting pyrolysis residue resource utilization by the exploration and development of shale gas. Environ. Sci. Pollut. Res. 2017, 24, 17816–17828. [Google Scholar] [CrossRef]
- Xie, B.X.; Qin, J.H.; Sun, H.; Wang, S.; Li, X. Release characteristics of polycyclic aromatic hydrocarbons (PAHs) leaching from oil-based drilling cuttings. Chemosphere 2022, 291, 132711. [Google Scholar] [CrossRef]
- Khan, A.M.; Imran, M.; Hashmi, A.S.; Shehzad, W.; Abbas, M. Quantification of Selected Polycyclic Aromatic Hydrocarbons (PAHs) in Soil, Water and Blood by an Optimized and Validated HPLC –UV–DAD Method. Pol. J. Environ. Stud. 2022, 31, 3633–3644. [Google Scholar] [CrossRef] [PubMed]
- Erawaty Silalahi, E.T.M.; Anita, S.; Teruna, H.Y. Comparison of Extraction Techniques for the Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil. J. Phys. Conf. Ser. 2021, 1819, 012061. [Google Scholar] [CrossRef]
- Mueller, A.; Ulrich, N.; Hollmann, J.; Zapata Sanchez, C.E.; Rolle-Kampczyk, U.E.; von Bergen, M. Characterization of a multianalyte GC-MS/MS procedure for detecting and quantifying polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives from air particulate matter for an improved risk assessment. Environ. Pollut. 2019, 255, 112967. [Google Scholar] [CrossRef]
- Chen, C.-F.; Ju, Y.-R.; Lim, Y.C.; Hsieh, S.-L.; Tsai, M.-L.; Sun, P.-P.; Katiyar, R.; Chen, C.-W.; Dong, C.-D. Determination of Polycyclic Aromatic Hydrocarbons in Sludge from Water and Wastewater Treatment Plants by GC-MS. Int. J. Environ. Res. Public Health 2019, 16, 2604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Dutta, S. Utility of comprehensive GC×GC-TOFMS in elucidation of aromatic hydrocarbon biomarkers. Fuel 2021, 283, 118890. [Google Scholar] [CrossRef]
- Liang, M.; Liang, H.D.; Gao, P.; Rao, Z.; Liang, Y.C. Characterization and risk assessment of polycyclic aromatic hydrocarbon emissions by coal fire in northern China. Environ. Geochem. Health 2022, 44, 933–942. [Google Scholar] [CrossRef]
- Gu, H.W.; Zhang, S.H.; Wu, B.C.; Chen, W.; Wang, J.B.; Liu, Y. A green chemometrics-assisted fluorimetric detection method for the direct and simultaneous determination of six polycyclic aromatic hydrocarbons in oil-field wastewaters. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 200, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Catena, S.; Sanllorente, S.; Sarabia, L.A.; Boggia, R.; Turrini, F.; Ortiz, M.C. Unequivocal identification and quantification of PAHs content in ternary synthetic mixtures and in smoked tuna by means of excitation-emission fluorescence spectroscopy coupled with PARAFAC. Microchem. J. 2020, 154, 104561. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Gu, H.W.; Guo, X.Z.; Geng, T.; Li, C.L.; Liu, G.X.; Wang, Z.S.; Li, X.C.; Chen, W. Tracing sources of oilfield wastewater based on excitation-emission matrix fluorescence spectroscopy coupled with chemical pattern recognition techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 281, 121596. [Google Scholar] [CrossRef]
- Qin, X.-Q.; Yao, B.; Jin, L.; Zheng, X.-Z.; Ma, J.; Benedetti, M.F.; Li, Y.; Ren, Z.-L. Characterizing Soil Dissolved Organic Matter in Typical Soils from China Using Fluorescence EEM–PARAFAC and UV–Visible Absorption. Aquat. Geochem. 2020, 26, 71–88. [Google Scholar] [CrossRef]
- Fernández-Sánchez, J.F.; Segura Carretero, A.; Cruces-Blanco, C.; Fernández-Gutiérrez, A. The development of solid-surface fluorescence characterization of polycyclic aromatic hydrocarbons for potential screening tests in environmental samples. Talanta 2003, 60, 287–293. [Google Scholar] [CrossRef]
- Hougaard, A.B.; Lawaetz, A.J.; Ipsen, R.H. Front face fluorescence spectroscopy and multi-way data analysis for characterization of milk pasteurized using instant infusion. LWT Food Sci. Technol. 2013, 53, 331–337. [Google Scholar] [CrossRef]
- Alves, J.C.L.; Poppi, R.J. Pharmaceutical analysis in solids using front face fluorescence spectroscopy and multivariate calibration with matrix correction by piecewise direct standardization. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 103, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.L.; Li, Y.; Yu, R.Q. Recent developments of chemical multiway calibration methodologies with second-order or higher-order advantages. J. Chemom. 2014, 28, 476–489. [Google Scholar] [CrossRef]
- Yin, X.L.; Gu, H.W.; Liu, X.L.; Zhang, S.H.; Wu, H.L. Comparison of three-way and four-way calibration for the real-time quantitative analysis of drug hydrolysis in complex dynamic samples by excitation-emission matrix fluorescence. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 192, 437–445. [Google Scholar] [CrossRef]
- Gu, H.W.; Yin, X.L.; Zhou, X.C.; Chen, Y.; Meng, X.Z.; Peng, T.Q. Impact of diverse background interferences on the alternating trilinear decomposition modeling of excitation-emission matrix fluorescence data acquired from different sample sources. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 232, 118173. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC. Tutorial and applications. Chemometr. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
Sample | ANT | FLA | PYR |
---|---|---|---|
Cal01 | 0.5 | 4.5 | 8 |
Cal02 | 1 | 4 | 5 |
Cal03 | 1.5 | 3.5 | 2 |
Cal04 | 2 | 3 | 9 |
Cal05 | 2.5 | 2.5 | 6 |
Cal06 | 3 | 2 | 3 |
Cal07 | 3.5 | 1.5 | 10 |
Cal08 | 4 | 1 | 7 |
Cal09 | 4.5 | 0.5 | 4 |
Sp01 | 1 | 3 | 3 |
Sp02 | 2 | 2 | 9 |
Sp03 | 3 | 1 | 6 |
Analyte | Calibration Equation | R2 | RMSEC (mg g−1) |
---|---|---|---|
ANT | Y = 5918.43X − 3160.37 | 0.9785 | 0.19 |
FLA | Y = 5635.00X − 601.08 | 0.9811 | 0.18 |
PYR | Y = 1109.05X − 487.40 | 0.9607 | 0.52 |
Sample | Analyte | Concentration (mg g−1) | Recovery (%) | RMSEP (mg g−1) | Average ± SD b (%) | ||
---|---|---|---|---|---|---|---|
Unspiked | Spiked | Found | |||||
Pretreated drill cuttings | ANT | 0.64 | 1 | 1.432 | 79.2 | 0.26 | 100.9 ± 19.2 |
2 | 2.952 | 115.6 | |||||
3 | 3.874 | 107.8 | |||||
FLA | 1.37 | 3 | 4.241 | 95.7 | 0.19 | 102.5 ± 17.6 | |
2 | 3.156 | 89.3 | |||||
1 | 2.595 | 122.5 | |||||
PYR | n.d. a | 3 | 2.277 | 75.9 | 1.04 | 88.1 ± 19.6 | |
9 | 9.963 | 110.7 | |||||
6 | 4.656 | 77.6 | |||||
Brick | ANT | n.d. | 1 | 1.215 | 121.5 | 0.20 | 102.7 ± 16.4 |
2 | 1.910 | 95.5 | |||||
3 | 2.736 | 91.2 | |||||
FLA | 0.43 | 3 | 3.145 | 90.5 | 0.27 | 94.9 ± 18.6 | |
2 | 2.736 | 115.3 | |||||
1 | 1.219 | 78.9 | |||||
PYR | n.d. | 3 | 2.529 | 84.3 | 0.44 | 96.0 ± 11.8 | |
9 | 8.631 | 95.9 | |||||
6 | 6.474 | 107.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, T.; Liu, Z.; Guo, X.; Wang, Z.; Li, X.; Chen, W. Direct Determination of Three PAHs in Drill Cuttings Recycling Products by Solid-Surface 3D Fluorescence Coupled with Chemometrics. Chemosensors 2023, 11, 150. https://doi.org/10.3390/chemosensors11020150
Geng T, Liu Z, Guo X, Wang Z, Li X, Chen W. Direct Determination of Three PAHs in Drill Cuttings Recycling Products by Solid-Surface 3D Fluorescence Coupled with Chemometrics. Chemosensors. 2023; 11(2):150. https://doi.org/10.3390/chemosensors11020150
Chicago/Turabian StyleGeng, Tao, Zhuozhuang Liu, Xianzhe Guo, Zhansheng Wang, Xingchun Li, and Wu Chen. 2023. "Direct Determination of Three PAHs in Drill Cuttings Recycling Products by Solid-Surface 3D Fluorescence Coupled with Chemometrics" Chemosensors 11, no. 2: 150. https://doi.org/10.3390/chemosensors11020150
APA StyleGeng, T., Liu, Z., Guo, X., Wang, Z., Li, X., & Chen, W. (2023). Direct Determination of Three PAHs in Drill Cuttings Recycling Products by Solid-Surface 3D Fluorescence Coupled with Chemometrics. Chemosensors, 11(2), 150. https://doi.org/10.3390/chemosensors11020150