The Platinization of Graphite Composites Turns Widespread and Low-Cost Materials into Hydrogen Peroxide Sensors and High-Value Biosensor Transducers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of CCR and Pencil Leads
2.3. CCR and PL Platinization and Characterization Protocols
2.4. Scanning Electron Microscopy (SEM) Study of the Sensors
2.5. Biosensor Construction and Characterization
2.6. Instrumentation and Software
2.7. Statistical Analysis
3. Results and Discussion
3.1. Role of HA Concentration and N2-Deoxygenation Protocol
3.2. Cyclic Voltammetry vs. Constant Potential Amperometry
3.3. HP Sensitivity after Platinization on Pencil Leads
3.4. SEM Images Study
3.5. Glucose Biosensor Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thakur, M.S.; Ragavan, K.V. Biosensors in Food Processing. J. Food Sci. Technol. 2013, 50, 625–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farina, D.; Zinellu, M.; Fanari, M.; Porcu, M.C.; Scognamillo, S.; Puggioni, G.M.G.; Rocchitta, G.; Serra, P.A.; Pretti, L. Development of a Biosensor Telemetry System for Monitoring Fermentation in Craft Breweries. Food Chem. 2017, 218, 479–486. [Google Scholar] [CrossRef]
- Barberis, A.; Spissu, Y.; Bazzu, G.; Fadda, A.; Azara, E.; Sanna, D.; Schirra, M.; Serra, P.A. Development and Characterization of an Ascorbate Oxidase-Based Sensor–Biosensor System for Telemetric Detection of AA and Antioxidant Capacity in Fresh Orange Juice. Anal. Chem. 2014, 86, 8727–8734. [Google Scholar] [CrossRef] [PubMed]
- Villalonga, A.; Sánchez, A.; Mayol, B.; Reviejo, J.; Villalonga, R. Electrochemical Biosensors for Food Bioprocess Monitoring. Curr. Opin. Food Sci. 2022, 43, 18–26. [Google Scholar] [CrossRef]
- Tetyana, P.; Shumbula, P.M.; Njengele-Tetyana, Z. Biosensors: Design, Development and Applications. In Nanopores; Ameen, S., Akhtar, M.S., Shin, H.-S., Eds.; IntechOpen: London, UK, 2021; ISBN 978-1-83880-209-7. [Google Scholar]
- Wang, K.; Lin, X.; Zhang, M.; Li, Y.; Luo, C.; Wu, J. Review of Electrochemical Biosensors for Food Safety Detection. Biosensors 2022, 12, 959. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Amperometric Biosensors for Clinical and Therapeutic Drug Monitoring: A Review. J. Pharm. Biomed. Anal. 1999, 19, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Pupim Ferreira, A.A.; Venturini, C.; de Souza Castilho, M.; Canaverolo, N.; Vinicius, M.; dos Santos, G.P.; Sadao, C.; Vicente, A.; Yamanak, H. Amperometric Biosensor for Diagnosis of Disease. In State of the Art in Biosensors-Environmental and Medical Applications; Rinken, T., Ed.; InTech: Singapore, 2013; ISBN 978-953-51-1035-4. [Google Scholar]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors Applications in Medical Field: A Brief Review. Sens. Int. 2021, 2, 100100. [Google Scholar] [CrossRef]
- Alhadrami, H.A. Biosensors: Classifications, Medical Applications, and Future Prospective. Biotechnol. Appl. Biochem. 2018, 65, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Zhu, A.; Tian, Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal. Chem. 2023, 95, 388–406. [Google Scholar] [CrossRef]
- Pedersen, O.; Revsbech, N.P.; Shabala, S. Microsensors in Plant Biology: In Vivo Visualization of Inorganic Analytes with High Spatial and/or Temporal Resolution. J. Exp. Bot. 2020, 71, 3941–3954. [Google Scholar] [CrossRef]
- Dzyadevych, S.V.; Arkhypova, V.N.; Soldatkin, A.P.; El’skaya, A.V.; Martelet, C.; Jaffrezic-Renault, N. Amperometric Enzyme Biosensors: Past, Present and Future. IRBM 2008, 29, 171–180. [Google Scholar] [CrossRef]
- Merchant, S.A.; Tran, T.O.; Meredith, M.T.; Cline, T.C.; Glatzhofer, D.T.; Schmidtke, D.W. High-Sensitivity Amperometric Biosensors Based on Ferrocene-Modified Linear Poly(Ethylenimine). Langmuir 2009, 25, 7736–7742. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.J. Amperometric Biosensors. In Encyclopedia of Biophysics; Roberts, G.C.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 61–67. ISBN 978-3-642-16711-9. [Google Scholar]
- Ahmed, S.; Shaikh, N.; Pathak, N.; Sonawane, A.; Pandey, V.; Maratkar, S. An Overview of Sensitivity and Selectivity of Biosensors for Environmental Applications. In Tools, Techniques and Protocols for Monitoring Environmental Contaminants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 53–73. ISBN 978-0-12-814679-8. [Google Scholar]
- Liu, Z.; Tian, Y. Recent Advances in Development of Devices and Probes for Sensing and Imaging in the Brain. Sci. China Chem. 2021, 64, 915–931. [Google Scholar] [CrossRef]
- Bojesen, K.B.; Andersen, K.A.; Rasmussen, S.N.; Baandrup, L.; Madsen, L.M.; Glenthøj, B.Y.; Rostrup, E.; Broberg, B.V. Glutamate Levels and Resting Cerebral Blood Flow in Anterior Cingulate Cortex Are Associated at Rest and Immediately Following Infusion of S-Ketamine in Healthy Volunteers. Front. Psychiatry 2018, 9, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.-C.; Mei, L.-P.; Ruan, Y.-F.; Zhang, N.; Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Enzyme-Based Biosensors and Their Applications. In Advances in Enzyme Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–223. ISBN 978-0-444-64114-4. [Google Scholar]
- Kaur, J.; Choudhary, S.; Chaudhari, R.; Jayant, R.D.; Joshi, A. Enzyme-Based Biosensors. In Bioelectronics and Medical Devices; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–240. ISBN 978-0-08-102420-1. [Google Scholar]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoytcheva, M.; Zlatev, R.; Velkova, Z.; Valdez, B.; Ovalle, M. Analytical Characteristics of Electrochemical Biosensors. Port. Electrochim. Acta 2009, 27, 353–362. [Google Scholar] [CrossRef]
- Wahart, A.J.C.; Staniland, J.; Miller, G.J.; Cosgrove, S.C. Oxidase Enzymes as Sustainable Oxidation Catalysts. R. Soc. Open Sci. 2022, 9, 211572. [Google Scholar] [CrossRef]
- Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors Based on Electrochemical Lactate Detection: A Comprehensive Review. Biochem. Biophys. Rep. 2016, 5, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Bacciu, A.; Arrigo, P.; Migheli, R.; Peana, A.T.; Rocchitta, G.; Serra, P.A. A Study on the Combination of Enzyme Stabilizers and Low Temperatures in the Long-Term Storage of Glutamate Biosensor. Chemosensors 2021, 9, 129. [Google Scholar] [CrossRef]
- Rocchitta, G.; Secchi, O.; Alvau, M.D.; Migheli, R.; Calia, G.; Bazzu, G.; Farina, D.; Desole, M.S.; O’Neill, R.D.; Serra, P.A. Development and Characterization of an Implantable Biosensor for Telemetric Monitoring of Ethanol in the Brain of Freely Moving Rats. Anal. Chem. 2012, 84, 7072–7079. [Google Scholar] [CrossRef]
- Wang, H.; Lang, Q.; Liang, B.; Liu, A. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface. In Yeast Surface Display; Liu, B., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1319, pp. 233–243. ISBN 978-1-4939-2747-0. [Google Scholar]
- Zhang, M.; Zhang, J.; Ding, Z.; Wang, H.; Huang, L.; Feng, X. Laser-Induced Graphene Arrays-Based Three-Phase Interface Enzyme Electrode for Reliable Bioassays. Biomimetics 2023, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Raymundo-Pereira, P.A.; Silva, T.A.; Caetano, F.R.; Ribovski, L.; Zapp, E.; Brondani, D.; Bergamini, M.F.; Marcolino, L.H.; Banks, C.E.; Oliveira, O.N.; et al. Polyphenol Oxidase-Based Electrochemical Biosensors: A Review. Anal. Chim. Acta 2020, 1139, 198–221. [Google Scholar] [CrossRef] [PubMed]
- Dudkaitė, V.; Bagdžiūnas, G. Functionalization of Glucose Oxidase in Organic Solvent: Towards Direct Electrical Communication across Enzyme-Electrode Interface. Biosensors 2022, 12, 335. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.A.; Zámocká, M.; Majtán, J.; Bauerová-Hlinková, V. Glucose Oxidase, an Enzyme “Ferrari”: Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022, 12, 472. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, R.D.; Chang, S.-C.; Lowry, J.P.; McNeil, C.J. Comparisons of Platinum, Gold, Palladium and Glassy Carbon as Electrode Materials in the Design of Biosensors for Glutamate. Biosens. Bioelectron. 2004, 19, 1521–1528. [Google Scholar] [CrossRef] [Green Version]
- Chatard, C.; Sabac, A.; Moreno-Velasquez, L.; Meiller, A.; Marinesco, S. Minimally Invasive Microelectrode Biosensors Based on Platinized Carbon Fibers for in Vivo Brain Monitoring. ACS Cent. Sci. 2018, 4, 1751–1760. [Google Scholar] [CrossRef]
- Salazar, P.; Martín, M.; O’Neill, R.D.; González-Mora, J.L. In Vivo Biosensor Based on Prussian Blue for Brain Chemistry Monitoring: Methodological Review and Biological Applications. In In Vivo Neuropharmacology and Neurophysiology; Philippu, A., Ed.; Neuromethods; Springer: New York, NY, USA, 2017; Volume 121, pp. 155–179. ISBN 978-1-4939-6488-8. [Google Scholar]
- Zain, Z.M.; O’Neill, R.D.; Lowry, J.P.; Pierce, K.W.; Tricklebank, M.; Dewa, A.; Ghani, S.A. Development of an Implantable D-Serine Biosensor for in Vivo Monitoring Using Mammalian d-Amino Acid Oxidase on a Poly (o-Phenylenediamine) and Nafion-Modified Platinum–Iridium Disk Electrode. Biosens. Bioelectron. 2010, 25, 1454–1459. [Google Scholar] [CrossRef] [Green Version]
- Ford, R.; Quinn, S.; O’Neill, R. Characterization of Biosensors Based on Recombinant Glutamate Oxidase: Comparison of Crosslinking Agents in Terms of Enzyme Loading and Efficiency Parameters. Sensors 2016, 16, 1565. [Google Scholar] [CrossRef] [Green Version]
- Lowry, J.P.; McAteer, K.; El Atrash, S.S.; Duff, A.; O’Neill, R.D. Characterization of Glucose Oxidase-Modified Poly(Phenylenediamine)-Coated Electrodes in Vitro and in Vivo: Homogeneous Interference by Ascorbic Acid in Hydrogen Peroxide Detection. Anal. Chem. 1994, 66, 1754–1761. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Zhao, L.; Zhou, H.; Xu, X.; Zheng, W. Recent Advances in Electrochemical Analysis of Hydrogen Peroxide towards in Vivo Detection. Process Biochem. 2022, 115, 57–69. [Google Scholar] [CrossRef]
- Samad, S.; Loh, K.S.; Wong, W.Y.; Lee, T.K.; Sunarso, J.; Chong, S.T.; Wan Daud, W.R. Carbon and Non-Carbon Support Materials for Platinum-Based Catalysts in Fuel Cells. Int. J. Hydrogen Energy 2018, 43, 7823–7854. [Google Scholar] [CrossRef]
- Lee, W.-J.; Bera, S.; Kim, C.M.; Koh, E.-K.; Hong, W.-P.; Oh, S.-J.; Cho, E.; Kwon, S.-H. Synthesis of Highly Dispersed Pt Nanoparticles into Carbon Supports by Fluidized Bed Reactor Atomic Layer Deposition to Boost PEMFC Performance. NPG Asia Mater. 2020, 12, 40. [Google Scholar] [CrossRef]
- Wang, J.X.; Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W.-P.; Adzic, R.R. Oxygen Reduction on Well-Defined Core−Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects. J. Am. Chem. Soc. 2009, 131, 17298–17302. [Google Scholar] [CrossRef] [PubMed]
- Balint, L.-C.; Hulka, I.; Kellenberger, A. Pencil Graphite Electrodes Decorated with Platinum Nanoparticles as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Materials 2021, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kim, S.H.; Kwak, S.K.; Song, H.-K. Curvature-Induced Metal–Support Interaction of an Islands-by-Islands Composite of Platinum Catalyst and Carbon Nano-Onion for Durable Oxygen Reduction. ACS Appl. Mater. Interfaces 2017, 9, 23302–23308. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Domínguez, S.; Arias-Pardilla, J.; Berenguer-Murcia, Á.; Morallón, E.; Cazorla-Amorós, D. Electrochemical Deposition of Platinum Nanoparticles on Different Carbon Supports and Conducting Polymers. J. Appl. Electrochem. 2008, 38, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Miao, N.; Wallace, G.G.; Chen, J.; Allwood, D.A. Engineering Carbon Materials for Electrochemical Oxygen Reduction Reactions. Adv. Energy Mater. 2021, 11, 2100695. [Google Scholar] [CrossRef]
- Saipanya, S.; Sarakonsri, T.; Wongtap, P. Electrochemical Deposition of Precious Metal on Carbon Nanotube for Methanol Oxidation. Mater. Res. Bull. 2012, 47, 2765–2766. [Google Scholar] [CrossRef]
- Kariuki, J.K. An Electrochemical and Spectroscopic Characterization of Pencil Graphite Electrodes. J. Electrochem. Soc. 2012, 159, H747–H751. [Google Scholar] [CrossRef]
- Torrinha, Á.; Amorim, C.G.; Montenegro, M.C.B.S.M.; Araújo, A.N. Biosensing Based on Pencil Graphite Electrodes. Talanta 2018, 190, 235–247. [Google Scholar] [CrossRef]
- de Lima, L.F.; Ferreira, A.L.; Torres, M.D.T.; de Araujo, W.R.; de la Fuente-Nunez, C. Minute-Scale Detection of SARS-CoV-2 Using a Low-Cost Biosensor Composed of Pencil Graphite Electrodes. Proc. Natl. Acad. Sci. USA 2021, 118, e2106724118. [Google Scholar] [CrossRef] [PubMed]
- Aiassa, S.; Yilmaz, S.; Carrara, S.; Demarchi, D. Pencil Graphite Needle-Shaped Biosensor for Anaesthetic Monitoring in Human Serum. In Proceedings of the 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25–28 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Akanda, M.d.R.; Sohail, M.; Aziz, M.d.A.; Kawde, A.-N. Recent Advances in Nanomaterial-Modified Pencil Graphite Electrodes for Electroanalysis. Electroanalysis 2016, 28, 408–424. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef] [PubMed]
- David, I.G.; Popa, D.-E.; Buleandra, M. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis. J. Anal. Methods Chem. 2017, 2017, 1905968. [Google Scholar] [CrossRef] [Green Version]
- Tavares, P.H.C.P.; Barbeira, P.J.S. Influence of Pencil Lead Hardness on Voltammetric Response of Graphite Reinforcement Carbon Electrodes. J. Appl. Electrochem. 2008, 38, 827–832. [Google Scholar] [CrossRef]
- McKelvey, K.; Nadappuram, B.P.; Actis, P.; Takahashi, Y.; Korchev, Y.E.; Matsue, T.; Robinson, C.; Unwin, P.R. Fabrication, Characterization, and Functionalization of Dual Carbon Electrodes as Probes for Scanning Electrochemical Microscopy (SECM). Anal. Chem. 2013, 85, 7519–7526. [Google Scholar] [CrossRef]
- Lourenço, C.F.; Caetano, M.; Ledo, A.; Barbosa, R.M. Platinized Carbon Fiber-Based Glucose Microbiosensor Designed for Metabolic Studies in Brain Slices. Bioelectrochemistry 2019, 130, 107325. [Google Scholar] [CrossRef]
- Dias, C.; Fernandes, E.; Barbosa, R.M.; Ledo, A. A Platinized Carbon Fiber Microelectrode-Based Oxidase Biosensor for Amperometric Monitoring of Lactate in Brain Slices. Sensors 2022, 22, 7011. [Google Scholar] [CrossRef]
- Fernandes, E.; Ledo, A.; Barbosa, R.M. Design and Evaluation of a Lactate Microbiosensor: Toward Multianalyte Monitoring of Neurometabolic Markers In Vivo in the Brain. Molecules 2022, 27, 514. [Google Scholar] [CrossRef]
- Calia, G.; Rocchitta, G.; Migheli, R.; Puggioni, G.; Spissu, Y.; Bazzu, G.; Mazzarello, V.; Lowry, J.; O’Neill, R.; Desole, M.; et al. Biotelemetric Monitoring of Brain Neurochemistry in Conscious Rats Using Microsensors and Biosensors. Sensors 2009, 9, 2511–2523. [Google Scholar] [CrossRef] [PubMed]
- Rocchitta, G.; Secchi, O.; Alvau, M.D.; Farina, D.; Bazzu, G.; Calia, G.; Migheli, R.; Desole, M.S.; O’Neill, R.D.; Serra, P.A. Simultaneous Telemetric Monitoring of Brain Glucose and Lactate and Motion in Freely Moving Rats. Anal. Chem. 2013, 85, 10282–10288. [Google Scholar] [CrossRef]
- Barberis, A.; Garbetta, A.; Cardinali, A.; Bazzu, G.; D’Antuono, I.; Rocchitta, G.; Fadda, A.; Linsalata, V.; D’Hallewin, G.; Serra, P.A.; et al. Real-Time Monitoring of Glucose and Phenols Intestinal Absorption through an Integrated Caco-2TC7cells/Biosensors Telemetric Device: Hypoglycemic Effect of Fruit Phytochemicals. Biosens. Bioelectron. 2017, 88, 159–166. [Google Scholar] [CrossRef]
- Kirwan, S.; Rocchitta, G.; McMahon, C.; Craig, J.; Killoran, S.; O’Brien, K.; Serra, P.; Lowry, J.; O’Neill, R. Modifications of Poly(o-Phenylenediamine) Permselective Layer on Pt-Ir for Biosensor Application in Neurochemical Monitoring. Sensors 2007, 7, 420–437. [Google Scholar] [CrossRef] [Green Version]
- McMahon, C.P.; Rocchitta, G.; Serra, P.A.; Kirwan, S.M.; Lowry, J.P.; O’Neill, R.D. Control of the Oxygen Dependence of an Implantable Polymer/Enzyme Composite Biosensor for Glutamate. Anal. Chem. 2006, 78, 2352–2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puggioni, G.; Calia, G.; Arrigo, P.; Bacciu, A.; Bazzu, G.; Migheli, R.; Fancello, S.; Serra, P.; Rocchitta, G. Low-Temperature Storage Improves the Over-Time Stability of Implantable Glucose and Lactate Biosensors. Sensors 2019, 19, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fois, M.; Arrigo, P.; Bacciu, A.; Monti, P.; Marceddu, S.; Rocchitta, G.; Serra, P.A. The Presence of Polysaccharides, Glycerol, and Polyethyleneimine in Hydrogel Enhances the Performance of the Glucose Biosensor. Biosensors 2019, 9, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tujunen, N.; Kaivosoja, E.; Protopopova, V.; Valle-Delgado, J.J.; Österberg, M.; Koskinen, J.; Laurila, T. Electrochemical Detection of Hydrogen Peroxide on Platinum-Containing Tetrahedral Amorphous Carbon Sensors and Evaluation of Their Biofouling Properties. Mater. Sci. Eng. C 2015, 55, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Bacciu, A.; Arrigo, P.; Delogu, G.; Marceddu, S.; Monti, P.; Rocchitta, G.; Serra, P.A. A New Perspective on Using Glycols in Glutamate Biosensor Design: From Stabilizing Agents to a New Containment Net. Chemosensors 2020, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Monti, P.; Rocchitta, G.; Marceddu, S.; Dettori, M.A.; Fabbri, D.; Jaoua, S.; Migheli, Q.; Delogu, G.; Serra, P.A. Use of β-Cyclodextrin as Enhancer of Ascorbic Acid Rejection in Permselective Films for Amperometric Biosensor Applications. Talanta 2018, 186, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.H.; Irwin, W.C.; Fesser, J.; Massey, K.L. Interference of Ascorbic Acid with Chemical Analytes. Ann. Clin. Biochem. 2005, 42, 475–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, K.; Kusuoka, R.; Inukai, M.; Igarashi, K.; Ohno, H.; Nakamura, N. An Amperometric Biosensor of L-Fucose in Urine for the First Screening Test of Cancer. Biosens. Bioelectron. 2021, 174, 112831. [Google Scholar] [CrossRef] [PubMed]
- Buleandră, M.; Popa, D.E.; David, I.G.; Ciucu, A.A. A Simple and Efficient Cyclic Square Wave Voltammetric Method for Simultaneous Determination of Epinephrine and Norepinephrine Using an Activated Pencil Graphite Electrode. Microchem. J. 2021, 160, 105621. [Google Scholar] [CrossRef]
- Annu; Sharma, S.; Jain, R.; Raja, A.N. Review—Pencil Graphite Electrode: An Emerging Sensing Material. J. Electrochem. Soc. 2020, 167, 037501. [Google Scholar] [CrossRef]
- Lisboa, T.P.; de Cássia Moreira, B.; Cunha de Souza, C.; Veríssimo de Oliveira, W.B.; Costa Matos, M.A.; Matos, R.C. A Pencil Graphite-Based Disposable Device for Electrochemical Monitoring of Sulfanilamide in Honey and Water Samples. Anal. Methods 2022, 14, 3867–3874. [Google Scholar] [CrossRef]
- Purushothama, H.T.; Nayaka, Y.A.; Vinay, M.M.; Manjunatha, P.; Yathisha, R.O.; Basavarajappa, K.V. Pencil Graphite Electrode as an Electrochemical Sensor for the Voltammetric Determination of Chlorpromazine. J. Sci. Adv. Mater. Devices 2018, 3, 161–166. [Google Scholar] [CrossRef]
- Bermingham, K.P.; Doran, M.M.; Bolger, F.B.; Lowry, J.P. Design Optimisation and Characterisation of an Amperometric Glutamate Oxidase-Based Composite Biosensor for Neurotransmitter l-Glutamic Acid. Anal. Chim. Acta 2022, 1224, 340205. [Google Scholar] [CrossRef]
- Baker, K.L.; Bolger, F.B.; Doran, M.M.; Lowry, J.P. Characterisation of a Platinum-Based Electrochemical Biosensor for Real-Time Neurochemical Analysis of Choline. Electroanalysis 2019, 31, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Finnerty, N.J.; Bolger, F.B. In Vitro Development and in Vivo Application of a Platinum-Based Electrochemical Device for Continuous Measurements of Peripheral Tissue Oxygen. Bioelectrochemistry 2018, 119, 124–135. [Google Scholar] [CrossRef]
- Calia, G.; Monti, P.; Marceddu, S.; Dettori, M.A.; Fabbri, D.; Jaoua, S.; O’Neill, R.D.; Serra, P.A.; Delogu, G.; Migheli, Q. Electropolymerized Phenol Derivatives as Permselective Polymers for Biosensor Applications. Analyst 2015, 140, 3607–3615. [Google Scholar] [CrossRef]
- Maioli, M.; Basoli, V.; Carta, P.; Fabbri, D.; Dettori, M.A.; Cruciani, S.; Serra, P.A.; Delogu, G. Synthesis of Magnolol and Honokiol Derivatives and Their Effect against Hepatocarcinoma Cells. PLoS ONE 2018, 13, e0192178. [Google Scholar] [CrossRef] [Green Version]
- Pyeshkova, V.M.; Dudchenko, O.Y.; Soldatkin, O.O.; Alekseev, S.A.; Seker, T.; Kurc, B.A.; Dzyadevych, S.V. Development of Three-Enzyme Lactose Amperometric Biosensor Modified by Nanosized Poly (Meta-Phenylenediamine) Film. Appl. Nanosci. 2022, 12, 1267–1274. [Google Scholar] [CrossRef]
- Zhou, D.-M.; Dai, Y.-Q.; Shiu, K.-K. Poly(Phenylenediamine) Film for the Construction of Glucose Biosensors Based on Platinized Glassy Carbon Electrode. J. Appl. Electrochem. 2010, 40, 1997–2003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caval, M.; Sanna, C.; Marceddu, S.; Rocchitta, G.; Serra, P.A. The Platinization of Graphite Composites Turns Widespread and Low-Cost Materials into Hydrogen Peroxide Sensors and High-Value Biosensor Transducers. Chemosensors 2023, 11, 153. https://doi.org/10.3390/chemosensors11030153
Caval M, Sanna C, Marceddu S, Rocchitta G, Serra PA. The Platinization of Graphite Composites Turns Widespread and Low-Cost Materials into Hydrogen Peroxide Sensors and High-Value Biosensor Transducers. Chemosensors. 2023; 11(3):153. https://doi.org/10.3390/chemosensors11030153
Chicago/Turabian StyleCaval, Myriam, Carla Sanna, Salvatore Marceddu, Gaia Rocchitta, and Pier Andrea Serra. 2023. "The Platinization of Graphite Composites Turns Widespread and Low-Cost Materials into Hydrogen Peroxide Sensors and High-Value Biosensor Transducers" Chemosensors 11, no. 3: 153. https://doi.org/10.3390/chemosensors11030153
APA StyleCaval, M., Sanna, C., Marceddu, S., Rocchitta, G., & Serra, P. A. (2023). The Platinization of Graphite Composites Turns Widespread and Low-Cost Materials into Hydrogen Peroxide Sensors and High-Value Biosensor Transducers. Chemosensors, 11(3), 153. https://doi.org/10.3390/chemosensors11030153