Design of a Boron-Doped Diamond Microcell Grafted with HRP for the Sensitive and Selective Detection of Ochratoxin A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. BDD Electrochemical Microcell
2.3. Surface Modification of BDD
2.4. Electrochemical Measurements
2.5. Scanning Electron Microscopy (SEM) Measurements
2.6. Contact Angle Measurements
2.7. FTIR
2.8. Analysis of the Real Samples and LC-MS/MS Measurements
3. Results and Discussion
3.1. Biosensor Design
3.1.1. Electrochemical Characterization
3.1.2. Morphological Characterization
3.1.3. FTIR and Contact Angle Characterization
3.2. Analytical Performance of the HRP Biosensor
3.2.1. SWV Response of the HRP-Based Sensor
3.2.2. Selectivity Measurements
3.2.3. Validation in Real Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monteoliva, M.; Rasero, F.S.; Gorgé, J.L.; Mayor, F. Ochratoxin A, a Toxic Metabolite produced by Aspergillus ochraceus Wilh. Nature 1965, 205, 498–499. [Google Scholar] [CrossRef]
- Bui-Klimke, T.R.; Wu, F. Ochratoxin A and human health risk: A review of the evidence. Physiol. Behav. 2018, 176, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; Nielsen, E.; et al. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef]
- Garg, K.; Villavicencio-Aguilar, F.; Solano-Rivera, F.; Gilbert, L. Analytical Validation of a Direct Competitive ELISA for Multiple Mycotoxin Detection in Human Serum. Toxins 2022, 14, 727. [Google Scholar] [CrossRef]
- Oncu-Kaya, E.M. Development and validation of a SPE-UHPLC-fluorescence method for the analysis of ochratoxin A in certain turkish wines. Maced. J. Chem. Chem. Eng. 2019, 38, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Lu, W.Y.; Mao, Y.H.; Qiu, X.C.; Du, D.L. An enhanced immunochromatography assay based on gold growth on the surface of E. coli carrier for the simultaneous detection of mycotoxins. Talanta 2023, 251, 123798. [Google Scholar] [CrossRef]
- Teixeira, T.R.; Hoeltz, M.; Einloft, T.C.; Dottori, H.A.; Manfroi, V.; Noll, I.B. Determination of ochratoxin A in wine from the southern region of Brazil by thin layer chromatography with a charge-coupled detector. Food Addit. Contam. Part B Surveill. 2011, 4, 289–293. [Google Scholar] [CrossRef]
- Lv, L.; Wang, X. Recent Advances in Ochratoxin A Electrochemical Biosensors: Recognition Elements, Sensitization Technologies, and Their Applications. J. Agric. Food Chem. 2020, 68, 4769–4787. [Google Scholar] [CrossRef]
- Zejli, H.; Goud, K.Y.; Marty, J.L. Label free aptasensor for ochratoxin A detection using polythiophene-3-carboxylic acid. Talanta 2018, 185, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ni, D.; Tan, Y.; Zhao, Z.; Liao, Y.; Wang, H.; Sun, C.; Wu, A. An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim. Acta 2017, 184, 147–153. [Google Scholar] [CrossRef]
- Chrouda, A.; Sbartai, A.; Bessueille, F.; Renaud, L.; Maaref, A.; Jaffrezic-Renault, N. Electrically addressable deposition of diazonium-functionalized antibodies on boron-doped diamond microcells for the detection of ochratoxin A. Anal. Methods 2015, 7, 2444–2451. [Google Scholar] [CrossRef]
- Pacheco, J.G.; Castro, M.; Machado, S.; Barroso, M.F.; Nouws, H.P.A.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sens. Actuators B Chem. 2015, 215, 107–112. [Google Scholar] [CrossRef]
- Kunene, K.; Weber, M.; Sabela, M.; Voiry, D.; Kanchi, S.; Bisetty, K.; Bechelany, M. Highly-efficient electrochemical label-free immunosensor for the detection of ochratoxin A in coffee samples. Sens. Actuators B Chem. 2020, 305, 127438. [Google Scholar] [CrossRef]
- Belbruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Chrouda, A.; Sbartai, A.; Baraket, A.; Renaud, L.; Maaref, A.; Jaffrezic-Renault, N. An aptasensor for ochratoxin A based on grafting of polyethylene glycol on a boron-doped diamond microcell. Anal. Biochem. 2015, 488, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Yue, S.; Zhang, W.; Li, X. Development of an electrochemical aptasensor using Au octahedra and graphene for signal amplification. Anal. Methods 2020, 12, 317–323. [Google Scholar] [CrossRef]
- Li, X.; Falcone, N.; Hossain, M.N.; Kraatz, H.B.; Chen, X.; Huang, H. Development of a novel label-free impedimetric electrochemical sensor based on hydrogel/chitosan for the detection of ochratoxin A. Talanta 2021, 226, 122183. [Google Scholar] [CrossRef] [PubMed]
- Abrunhosa, L.; Paterson, R.R.M.; Venancio, A. Biodegradation of Ochratoxin A for Food and Feed Decontamination. Toxins 2010, 2, 1078–1099. [Google Scholar] [CrossRef] [Green Version]
- Pitout, M. The hydrolysis of ochratoxin A by some proteolytic enzymes. J. Biochem. Pharmacol. 1969, 18, 485–491. [Google Scholar] [CrossRef]
- Stander, M.A.; Steyn, P.S.; van der Westhuizen, F.H.; Payne, B.E. A kinetic study into the hydrolysis of the ochratoxins and analogues by carboxypeptidase A. Chem. Res. Toxicol. 2001, 14, 302–304. [Google Scholar] [CrossRef]
- Stander, M.A.; Bornscheuer, U.T.; Henke, E.; Steyn, P.S. Screening of Commercial Hydrolases for the Degradation of Ochratoxin A. J. Agric. Food Chem. 2000, 48, 5736–5739. [Google Scholar] [CrossRef]
- Abrunhosa, L.; Santos, L.; Venancio, A. Degradation of Ochratoxin A by Proteases and by a Crude Enzyme of Aspergillus niger. Food Biotechnol. 2006, 20, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Dobritzsch, D.; Wang, H.; Schneider, G.; Yu, S. Structural and functional characterization of ochratoxinase, a novel mycotoxin-degrading enzyme. Biochem. J. 2014, 462, 441–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, R.; Bai, Y.; Hata, T. Further Confirmation of Carboxypeptidase Y as a Metal-Free Enzyme Having a Reactive Serine Residue. J. Biochem. 1975, 77, 1313–1318. [Google Scholar] [CrossRef]
- Dridi, F.; Marrakchi, M.; Gargouri, M.; Saulnier, J.; Jaffrezic-Renault, N.; Lagarde, F. Comparison of carboxypeptidase Y and thermolysin for ochratoxin A electrochemical biosensing. Anal. Methods 2015, 7, 8954. [Google Scholar] [CrossRef]
- Endo, S. Studies on protease by thermophilic bacteria. J. Ferment. Technol. 1962, 40, 346–353. [Google Scholar]
- Morihara, K.; Tsuzuki, H. Thermolysin: Kinetic Study with Oligopeptides. J. Biochem. 1970, 15, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Dridi, F.; Marrakchi, M.; Gargouri, M.; Garcia-Cruz, A.; Dzyadevych, S.; Vocanson, F.; Saulnier, J.; Jaffrezic-Renault, N.; Lagarde, F. Thermolysin entrapped in a gold nanoparticles/polymer composite for direct and sensitive conductometric biosensing of ochratoxin A in olive oil. Sens. Actuators B Chem. 2015, 221, 480–490. [Google Scholar] [CrossRef]
- Gorton, L.; Lindgren, A.; Larsson, T.; Munteanu, F.D.; Ruzgas, T.; Gazaryan, I. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal. Chim. Acta 1999, 400, 91–108. [Google Scholar] [CrossRef]
- Zinoubi, K.; Chrouda, A.; Soltane, R.; Al-Ghamdi, Y.O.; Garallah Almalki, S.; Osman, G.; Barhoumi, H.; Jaffrezic-Renault, N. Highly Sensitive Impedimetric Biosensor Based on Thermolysin Immobilized on a GCE Modified with AuNP-decorated Graphene for the Detection of Ochratoxin A. Electroanalysis 2021, 33, 136–145. [Google Scholar] [CrossRef]
- ElKaoutit, M.; Naranjo-Rodriguez, I.; Manuel Dominguez, M.; Hernandez-Artiga, M.P.; Bellido-Milla, D.; Hidalgo-Hidalgo de Cisneros, J.L. A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion–Sonogel–Carbon composite. Electrochim. Acta 2008, 53, 7131–7137. [Google Scholar] [CrossRef]
- Garcia-Moreno, M.; Moreno-Conesa, M.; Rodriguez-Lopez, J.N.; Garcia-Canovas, F.; Varon, R. Oxidation of 4-tert-butylcatechol and dopamine by hydrogen peroxide catalyzed by horseradish peroxidase. Biol. Chem. 1999, 380, 689–694. [Google Scholar] [CrossRef]
- Ramirez, E.A.; Zon, M.A.; Jara Ulloa, P.A.; Squella, J.A.; Nunez Vergara, L.; Fernandez, H. Adsorption of ochratoxin A (OTA) anodic oxidation product on glassy carbon electrodes in highly acidic reaction media: Its thermodynamic and kinetics characterization. Electrochim. Acta. 2010, 55, 771–778. [Google Scholar] [CrossRef]
- Serra, B.; Reviejo, A.J.; Pingarron, J.M. Composite Multienzyme Amperometric Biosensors for an Improved Detection of Phenolic Compounds. Electroanalysis 2003, 15, 1737–1744. [Google Scholar] [CrossRef]
- Alonso Lomillo, M.A.; Kauffmann, J.M.; Arcos Martinez, M.J. HRP-based biosensor for monitoring rifampicin. Biosens. Bioelectron. 2003, 18, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Ferreira-Gonçalves, L.; Arcos-Martínez, M.J. Sensitive enzyme-biosensor based on screen-printed electrodes for Ochratoxin A. Biosens. Bioelectron. 2010, 25, 1333–1337. [Google Scholar] [CrossRef]
- Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; del Torno de Román, L.; Arcos-Martínez, M.J. Horseradish peroxidase-screen printed biosensors for determination of Ochratoxin A. Anal. Chim. Acta 2011, 688, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Huynh, M.T.; Anson, C.W.; Cavell, A.C.; Stahl, S.S.; Hammes-Schiffer, S.J. Quinone 1 e− and 2 e−/2 H+ Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships. Am. Chem. Soc. 2016, 138, 15903–15910. [Google Scholar] [CrossRef] [PubMed]
- Sbartai, A.; Jaffrezic-Renault, N.; Bougard, D.; Segarra, C.; Fournier-Wirth, C.; Kang, S.; Lim, K.; An, S.S.A. Magnetic microparticle-based multimer detection system for the electrochemical detection of prion oligomers in sheep using a recyclable BDD electrode. Microchem. J. 2021, 164, 106089. [Google Scholar] [CrossRef]
- Rahmani, A.; Jinap, S.; Soleimany, F. Validation of the procedure for the simultaneous determination of aflatoxins ochratoxin A and zearalenone in cereals using HPLC-FLD. Food Addit. Contam. Part A 2010, 27, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Hetemi, D.; Noël, V.; Pinson, J. Grafting of diazonium salts on surfaces: Application to biosensors. Biosensors 2020, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhin, D.; Polcari, D.; Bodart-Le Guen, C.; Tomasello, G.; Cicoira, F.; Schougaard, S.B. Diazonium-Based Anchoring of PEDOT on Pt/Ir Electrodes via Diazonium Chemistry. J. Electrochem. Soc. 2018, 165, G3066–G3070. [Google Scholar] [CrossRef]
- Nasture, A.M.; Ionete, E.I.; Lungu, F.A.; Spiridon, S.I.; Patularu, L.G. Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. Chemosensors 2022, 10, 161. [Google Scholar] [CrossRef]
- Lo, M.; Pires, R.; Diaw, K.; Gningue-Sall, D.; Oturan, M.A.; Aaron, J.J.; Chehimi, M.M. Diazonium Salts: Versatile Molecular Glues for Sticking Conductive Polymers to Flexible Electrodes. Surfaces 2018, 1, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Huang, X.; Ma, M. A molecularly imprinted electrochemical sensor based on polypyrrole/carbon nanotubes composite for the detection of S-ovalbumin in egg white. Int. J. Electrochem. Sci. 2017, 12, 3965–3981. [Google Scholar] [CrossRef]
- Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, solutions and prospects. Acta Nat. 2013, 5, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Walter, J.G.; Heilkenbrinker, A.; Austerjost, J.; Timur, S.; Stahl, F.; Scheper, T. Aptasensors for small molecule detection. Z. Nat. Sect. B J. Chem. Sci. 2012, 67, 976–986. [Google Scholar] [CrossRef] [Green Version]
- Bonel, L.; Vidal, J.C.; Duato, P.; Castillo, J.R. Ochratoxin A nanostructured electrochemical immunosensors based on polyclonal antibodies and gold nanoparticles coupled to the antigen. Anal. Methods 2010, 2, 335–341. [Google Scholar] [CrossRef]
- Zamfir, L.G.; Geana, I.; Bourigua, S.; Rotariu, L.; Bala, C.; Errachid, A.; Jaffrezic-Renault, N. Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sens. Actuators B Chem. 2011, 159, 178–184. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, W. The determination of Ochratoxin A based on the electrochemical aptasensor by carbon aerogels and methylene blue assisted signal amplification. Chem. Cent. J. 2018, 12, 45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhi, H.; Zhu, M.; Wang, F.; Meng, H.; Feng, L. Electrochemical/visual dual-readout aptasensor for Ochratoxin A detection integrated into a miniaturized paper-based analytical device. Biosens. Bioelectron. 2021, 180, 113146. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Zhang, Y.; Xue, C.; Chen, X. Ultrasensitive Detection of Ochratoxin A with a Zeolite Imidazolate Frameworks Composite–Based Electrochemical Aptasensor. Front. Chem. 2022, 10, 858107. [Google Scholar] [CrossRef] [PubMed]
- Mazaafrianto, D.N.; Ishida, A.; Maeki, M.; Tani, H.; Tokeshi, M. Label-Free Electrochemical Sensor for Ochratoxin A Using a Microfabricated Electrode with Immobilized Aptamer. ACS Omega 2018, 3, 16823–16830. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Li, D.; Liu, R.; Cui, C.; Guo, Z. Label-free aptasensor for ochratoxin A detection using SYBR gold as a probe. Sens. Actuators B Chem. 2017, 246, 647–652. [Google Scholar] [CrossRef]
Sensor Design | Detection Range ng/mL | Real Sample | LOD ng/mL | Refs | |
---|---|---|---|---|---|
Antibodies | BSA/anti-OTA/PdNPs/SPCEs | 0.3–8.5 | wheat | 0.86 | [48] |
BSA/anti-OTA/PdNPs/CF | 0.5–20 | coffee | 0.096 | [13] | |
Anti-OTA-MNPs/BSA/GA/TA/Au | 0.01–5 | wine | 0.01 | [49] | |
Anti-OTA/DIA/BDD | 7–25 | coffee | 7 × 10−3 | [11] | |
Aptamers | Apt/PEG/BDD | 0.01–13.2 | coffee | 0.01 | [15] |
MB/Cas-cDNA/Apt/Au | 0.10–10 | corn | 0.1 × 10−3 | [50] | |
Th-cDNA-Bio-Apt/SA-Gr/GCE | 0.01–5 | beer | 0.13 × 10−3 | [16] | |
Apt/DNA1/DNA2/Ch/Hyd/CGE | 0.1–100 | wine | 0.03 | [17] | |
Apt/Ch-MoS2-Au@Pt/PAD | 0.1–200 | corn | 25.2 × 10−6 | [51] | |
Thi/HRP-DNA/DSN/Zif-8-AuNPs/ITO | (1–107) × 10−6 | wheat | 247 × 10−6 | [52] | |
MB/Apt/6-MHOH/Au | 0.1–300 | coffee beer | 78.3 × 10−3 | [53] | |
MIP | CGE/MWCNTs/MIP | (20.19–403.8) × 103 | beer wine | 1.7 × 10−3 | [12] |
Enzyme | HRP/SPE | (9.63–82.08) × 103 | beer | 10.8 | [37] |
HRP/Ppy/SPCEs | (0.09–1.05) × 103 | beer coffee | 0.04 | [36] | |
CPY/BSA/IDT TLN/BSA/IDT | (0.40–30.28) × 103 | olive oil | 1 × 103 | [25] | |
TLN/AuNPs/ (PVA/PEI)/IDT | (0.40–24.22) × 103 | olive oil | 0.4 | [28] | |
TLN/AuNPs/CCLC/GR/GCE | (0.08–40.38) × 103 | coffee | 80.8 × 10−3 | [30] | |
HRP/MWNTs/DS/BDD | 4.04 × 10−3–4.04 × 10−8 | corn, wheat, feed stuff | 4.04 × 10−6 | The present work |
Samples | HRP Biosensor (µg/kg), | LC-MS/MS (µg/kg), Mean ± SD | |
---|---|---|---|
Mean ± SD | Recovery rate | ||
Corn | 42.0 ± 1.9 | 84 ± 13% | 50.0 ± 1.2 |
Wheat | 38.0 ± 2.0 | 93 ± 5% | 40.5 ± 2.1 |
Feed stuff | 9.0 ± 1.1 | 100 ± 12% | 9.0 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrouda, A.; Ayed, D.; Elamin, M.B.; Ali, S.M.A.; Alhaidari, L.M.; Bessueille, F.; Jaffrezic-Renault, N. Design of a Boron-Doped Diamond Microcell Grafted with HRP for the Sensitive and Selective Detection of Ochratoxin A. Chemosensors 2023, 11, 176. https://doi.org/10.3390/chemosensors11030176
Chrouda A, Ayed D, Elamin MB, Ali SMA, Alhaidari LM, Bessueille F, Jaffrezic-Renault N. Design of a Boron-Doped Diamond Microcell Grafted with HRP for the Sensitive and Selective Detection of Ochratoxin A. Chemosensors. 2023; 11(3):176. https://doi.org/10.3390/chemosensors11030176
Chicago/Turabian StyleChrouda, Amani, Dhekra Ayed, Manahil Babiker Elamin, Shazalia Mahmoud Ahmed Ali, Laila M. Alhaidari, Francois Bessueille, and Nicole Jaffrezic-Renault. 2023. "Design of a Boron-Doped Diamond Microcell Grafted with HRP for the Sensitive and Selective Detection of Ochratoxin A" Chemosensors 11, no. 3: 176. https://doi.org/10.3390/chemosensors11030176
APA StyleChrouda, A., Ayed, D., Elamin, M. B., Ali, S. M. A., Alhaidari, L. M., Bessueille, F., & Jaffrezic-Renault, N. (2023). Design of a Boron-Doped Diamond Microcell Grafted with HRP for the Sensitive and Selective Detection of Ochratoxin A. Chemosensors, 11(3), 176. https://doi.org/10.3390/chemosensors11030176