Monitoring Molecular Structure Changes of Cow and Camel Milk Mixtures during Coagulation: A Study Based on TPA and 2DCOS-MIR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Sampling and Coagulation
2.2. Physicochemical Composition of Milk Mixtures
2.3. Texture Profile Analysis
2.4. Acquisition of Mid-Infrared Spectra during Coagulation
2.5. Two-Dimensional Correlation Spectroscopy
2.6. Statistical Analysis
2.7. Partial Least Square Discriminant Analysis
3. Results and Discussion
3.1. Physicochemical Composition of Milk Mixtures
3.2. Texture Profile Analysis
3.3. One-Dimensional Description of the MIR Spectra
3.4. Two-Dimensional MIR Spectra Analysis
3.5. PLS-DA Applied to 2DCOS Maps
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Al haj, O.A.; Al Kanhal, H.A. Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 2010, 20, 811–821. [Google Scholar] [CrossRef]
- Fukuda, K. Camel milk. In Milk and Dairy Products in Human Nutrition: Production, Composition and Health; John Wiley & Sons: Oxford, UK, 2013; pp. 578–593. [Google Scholar]
- Khalesi, M.; Salami, M.; Moslehishad, M.; Winterburn, J.; Moosavi-Movahedi, A.A. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends food Sci. Technol. 2017, 62, 49–58. [Google Scholar] [CrossRef]
- Boukria, O.; Wang, J.; Safarov, J.; Gharsallaoui, A.; Leriche, F.; El Hadrami, E.M.; Aït-Kaddour, A. Delineation of molecular structure modification during coagulation of mixed camel and cow milk by mid-infrared spectroscopy and parallel factor analysis. J. Food Process. Preserv. 2021, 46, e15839. [Google Scholar] [CrossRef]
- Ismaili, M.A.; Saidi, B.; Zahar, M.; Hamama, A.; Ezzaier, R. Composition and microbial quality of raw camel milk produced in Morocco. J. Saudi Soc. Agric. Sci. 2019, 18, 17–21. [Google Scholar] [CrossRef]
- Abrhaley, A.; Leta, S. Medicinal value of camel milk and meat. J. Appl. Anim. Res. 2018, 46, 552–558. [Google Scholar] [CrossRef]
- Tasturganova, E.; Dikhanbaeva, F.; Prosekov, A.; Zhunusova, G.; Dzhetpisbaeva, B.; Matibaeva, A. Research of fatty acid composition of samples of bio-drink made of camel milk. Curr. Res. Nutr. Food Sci. 2018, 6, 491–499. [Google Scholar] [CrossRef]
- Singh, R.; Ghorui, S.K.; Sahani, M.S. Camel milk: Properties and processing potential. In The Indian Camel; National Research Center on Camel: Bikaner, India, 2006; pp. 59–73. [Google Scholar]
- El-Agamy, E.I.; Nawar, M.A. Nutritive and immunological values of camel milk: A comparative study with milk of other species. In Proceedings of the 2nd International Camelid Conference. Agroeconomics of Camelid Farming, Almaty, Kazakhstan, 8–12 September 2000; pp. 8–12. [Google Scholar]
- Shamsia, S.M. Nutritional and therapeutic properties of camel and human milks. Int. J. Genet. Mol. Biol. 2009, 1, 052–058. [Google Scholar]
- Agrawal, R.P.; Budania, S.; Sharma, P.; Gupta, R.; Kochar, D.K.; Panwar, R.B.; Sahani, M.S. Zero prevalence of diabetes in camel milk consuming Raica community of north-west Rajasthan, India. Diabetes Res. Clin. Pract. 2007, 76, 290–296. [Google Scholar] [CrossRef]
- Ramet, J.-P. The Technology of Making Cheese from Camel Milk (Camelus dromedarius); Animal Production and Health Paper No. 113; FAO: Rome, Italy, 2001. [Google Scholar]
- Farah, Z.; Bachmann, M.R. Rennet coagulation properties of camel milk. Milchwissenschaft 1987, 42, 689–692. [Google Scholar]
- Bulca, S.; Dumanoğlu, B.; Özdemir, Ö.C. A Study on Mixing Camel Milk with Cow, Sheep and Goat Milk in Different Proportions in Yoghurt Production. Turkish J. Agric.-Food Sci. Technol. 2019, 7, 2095. [Google Scholar] [CrossRef]
- Boukria, O.; El Hadrami, E.M.; Sameen, A.; Sahar, A.; Khan, S.; Safarov, J.; Sultanova, S.; Leriche, F.; Aït-Kaddour, A. Biochemical, Physicochemical and Sensory Properties of Yoghurts Made from Mixing Milks of Different Mammalian Species. Foods 2020, 9, 1722. [Google Scholar] [CrossRef]
- Boukria, O.; El Hadrami, E.M.; Boudalia, S.; Safarov, J.; Leriche, F.; Aït-Kaddour, A. The effect of mixing milk of different species on chemical, physicochemical, and sensory features of cheeses: A review. Foods 2020, 9, 1309. [Google Scholar] [CrossRef]
- Mustafa, E.A.; Tyfor, B.; Tabidi, M.H.; Ahmed, M.E.M. The effect of mixing different percentages of cow milk on the physiochemical characteristics of camel milk yoghurt and the sensory evaluation of yoghurt. World J. Pharmac. Pharma. Sci. 2015, 4, 180–190. [Google Scholar]
- Herbert, S.; Riaublanc, A.; Bouchet, B.; Gallant, D.J.; Dufour, E. Fluorescence Spectroscopy Investigation of Acid-or Rennet-Induced Coagulation of Milk. J. Dairy Sci. 1999, 82, 2056–2062. [Google Scholar] [CrossRef]
- O’callaghan, D.J.; O’Donnell, C.P.; Payne, F.A. Review of systems for monitoring curd setting during cheese making. Int. J. Dairy Tech. 2002, 55, 65–74. [Google Scholar] [CrossRef]
- Nishinari, K.; Kohyama, K.; Kumagai, H.; Funami, T.; Bourne, M.C. Parameters of texture profile analysis. Food Sci. Technol. Res. 2013, 19, 519–521. [Google Scholar] [CrossRef]
- Peleg, M. The instrumental texture profile analysis revisited. J. Texture Stud. 2019, 50, 362–368. [Google Scholar] [CrossRef]
- Nishinari, K.; Fang, Y.; Rosenthal, A. Human oral processing and texture profile analysis parameters: Bridging the gap between the sensory evaluation and the instrumental measurements. J. Texture Stud. 2019, 50, 369–380. [Google Scholar] [CrossRef]
- De Souza Zangirolami, M.; Moreira, T.F.M.; Leimann, F.V.; Valderrama, P.; Março, P.H. Texture profile and short-NIR spectral vibrations relationship evaluated through Comdim: The case study for animal and vegetable proteins. Food Control 2023, 143, 109290. [Google Scholar] [CrossRef]
- Sahar, A.; ur Rahman, U.; Kondjoyan, A.; Portanguen, S.; Dufour, E. Monitoring of thermal changes in meat by synchronous fluorescence spectroscopy. J. Food Eng. 2016, 168, 160–165. [Google Scholar] [CrossRef]
- Sandra, S.; Cooper, C.; Alexander, M.; Corredig, M. Coagulation properties of ultrafiltered milk retentates measured using rheology and diffusing wave spectroscopy. Food Res. Int. 2011, 44, 951–956. [Google Scholar] [CrossRef]
- Loudiyi, M.; Rutledge, D.N.; Montel, M.C. Study of Salt and Heating Effects of Model Cheeses by Synchronous Fluorescence and Rheology Coupled with Chemometrics Tools. In Proceedings of the Congress on Food Structure & Design, Antalya, Turkey, 26–28 October 2016. [Google Scholar] [CrossRef]
- Etzion, Y.; Linker, R.; Cogan, U.; Shmulevich, I. Determination of protein concentration in raw milk by mid-infrared Fourier transform infrared/attenuated total reflectance spectroscopy. J. Dairy Sci. 2004, 87, 2779–2788. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.M.; Barbano, D.M.; Schweisthal, M.; Fleming, J.R. Precalibration evaluation procedures for mid-infrared milk analyzers. J. Dairy Sci. 2006, 89, 2761–2774. [Google Scholar] [CrossRef]
- Fagan, C.C.; Everard, C.; O’Donnell, C.P.; Downey, G.; Sheehan, E.M.; Delahunty, C.M.; O’Callaghan, D.J. Evaluating mid-infrared spectroscopy as a new technique for predicting sensory texture attributes of processed cheese. J. Dairy Sci. 2007, 90, 1122–1132. [Google Scholar] [CrossRef]
- Loudiyi, M.; Aït-Kaddour, A. Delineation of salts, ripening and gentle heating effects on molecular structure of Cantal-type cheese by Mid-infrared spectroscopy. Food Res. Int. 2018, 105, 221–232. [Google Scholar] [CrossRef]
- Kulmyrzaev, A.; Dufour, É.; Noël, Y.; Hanafi, M.; Karoui, R.; Qannari, E.M.; Mazerolles, G. Investigation at the molecular level of soft cheese quality and ripening by infrared and fluorescence spectroscopies and chemometrics—Relationships with rheology properties. Int. Dairy J. 2005, 15, 669–678. [Google Scholar] [CrossRef]
- Noda, I. Two-dimensional infrared spectroscopy of synthetic and biopolymers. Bull. Am. Phys. Soc. 1986, 31, 520–524. [Google Scholar]
- Noda, I. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl. Spectrosc. 1993, 47, 1329–1336. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; The Association of Official Analytical Chemistry: Washington, DC, USA, 2016. [Google Scholar]
- Pons, M.; Fiszman, S.M. Instrumental texture profile analysis with particular reference to gelled systems. J. Texture Stud. 1996, 27, 597–624. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Noda, I.; Ozaki, Y. Principle of Two-Dimensional Correlation Spectroscopy. In Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy; Wiley: Hoboken, NJ, USA, 2004; ISBN 0470012390. [Google Scholar]
- Boukria, O.; El Hadrami, E.M.; Sultanova, S.; Safarov, J.; Leriche, F.; Aït-Kaddour, A. 2D-cross correlation spectroscopy coupled with molecular fluorescence spectroscopy for analysis of molecular structure modification of camel milk and cow milk mixtures during coagulation. Foods 2020, 9, 724. [Google Scholar] [CrossRef]
- Gorban, A.M.S.; Izzeldin, O.M. Mineral content of camel milk and colostrum. J. Dairy Res. 1997, 64, 471–474. [Google Scholar] [CrossRef]
- Kamal, M.; Foukani, M.; Karoui, R. Rheological and physical properties of camel and cow milk gels enriched with phosphate and calcium during acid-induced gelation. J. Food Sci. Technol. 2017, 54, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Kamal-Eldin, A.; Alhammadi, A.; Gharsallaoui, A.; Hamed, F.; Ghnimi, S. Physicochemical, rheological, and micro-structural properties of yogurts produced from mixtures of camel and bovine milks. NFS J. 2020, 19, 26–33. [Google Scholar] [CrossRef]
- Abdalla, A.; Abu-Jdayil, B.; AlMadhani, S.; Hamed, F.; Kamal-Eldin, A.; Huppertz, T.; Ayyash, M. Low-fat akawi cheese made from bovine-camel milk blends: Rheological properties and microstructural characteristics. J. Dairy Sci. 2022, 105, 4843–4856. [Google Scholar] [CrossRef] [PubMed]
- El Zubeir, I.E.M.; Jabreel, S.O. Fresh cheese from camel milk coagulated with Camifloc. Int. J. Dairy Technol. 2008, 61, 90–95. [Google Scholar] [CrossRef]
- El-Zeini, H.M. Microstructure, rheological and geometrical properties of fat globules of milk from different animal species. Pol. J. Food Nutr. Sci. 2006, 15, 147–153. [Google Scholar]
- Ayyash, M.; Abdalla, A.; Abu-Jdayil, B.; Huppertz, T.; Bhaskaracharya, R.; Al-Mardeai, S.; Mairpady, A.; Ranasinghe, A.; Al-Nabulsi, A. Rheological properties of fermented milk from heated and high pressure-treated camel milk and bovine milk. LWT 2022, 156, 113029. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Z. Acid and rennet-induced coagulation behavior of casein micelles with modified structure. Food Chem. 2019, 291, 231–238. [Google Scholar] [CrossRef]
- Mbye, M.; Ayyash, M.; Abu-Jdayil, B.; Kamal-Eldin, A. The Texture of Camel Milk Cheese: Effects of Milk Composition, Coagulants, and Processing Conditions. Front. Nutr. 2022, 9, 868320. [Google Scholar] [CrossRef]
- Beux, S.; Martino, C.; Ferreira, Z.A.A.; Alessandro, N.; Nina, W. Seasonal effect on milk composition, somatic cell content and milk coagulation properties of Italian Holstein-Friesian cows. Emir. J. Food Agric. 2018, 30, 998–1005. [Google Scholar]
- Romeih, E.A.; Michaelidou, A.; Biliaderis, C.G.; Zerfiridis, G.K. Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: Chemical, physical and sensory attributes. Int. Dairy J. 2002, 12, 525–540. [Google Scholar] [CrossRef]
- Nicolaou, N.; Xu, Y.; Goodacre, R. Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. J. Dairy Sci. 2010, 93, 5651–5660. [Google Scholar] [CrossRef] [PubMed]
- Mazerolles, G.; Devaux, M.; Duboz, G.; Duployer, M.; Riou, N.M.; Dufour, E. Infrared and fluorescence spectroscopy for monitoring protein structure and interaction changes during cheese ripening. Lait 2001, 81, 509–527. [Google Scholar] [CrossRef]
- Bellamy, L.J. The Infrared Spectra of Complex Molecules; John Wiley & Sons, Ltd.: London, UK, 1975. [Google Scholar]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Lapointe-Vignola, C. Science et Technologie du Lait: Transformation du Lait; Presses Inter Polytechnique: École polytechnique de Montréal, QC, Canada, 2002; ISBN 255301029X. [Google Scholar]
- Dufour, E.; Mazerolles, G.; Devaux, M.F.; Duboz, G.; Duployer, M.H.; Mouhous Riou, N. Phase transition of triglycerides during semi-hard cheese ripening. Int. Dairy J. 2000, 10, 81–93. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Anderle, G.; Jaworsky, M.; Mantsch, H.H.; Dluhy, R.A. Fourier transform infrared spectroscopic studies of lipid-protein interaction in native and reconstituted sarcoplasmic reticulum. Biochim. Biophys. Acta (BBA)-Biomembr. 1984, 775, 215–224. [Google Scholar] [CrossRef]
- De Collongue-Poyet, B.; Sebille, B.; Baron, M. Chromatography of the Interferon γ and the analogue II: FTIR analysis. Biospectroscopy 1996, 2, 101–111. [Google Scholar] [CrossRef]
- Guerzoni, M.E.; Vannini, L.; Chaves Lopez, C.; Lanciotti, R.; Suzzi, G.; Gianotti, A. Effect of high pressure homogenization on microbial and chemico-physical characteristics of goat cheeses. J. Dairy Sci. 1999, 82, 851–862. [Google Scholar] [CrossRef]
- Meurens, M.; Baeten, V.; Yan, S.H.; Mignolet, E.; Larondelle, Y. Determination of the conjugated linoleic acids in cow’s milk fat by Fourier transform Raman spectroscopy. J. Agric. Food Chem. 2005, 53, 5831–5835. [Google Scholar] [CrossRef]
- Boubellouta, T.; Galtier, V.; Dufour, É. Effects of added minerals (calcium, phosphate, and citrate) on the molecular structure of skim milk as investigated by mid-infrared and synchronous fluorescence spectroscopies coupled with chemometrics. Appl. Spectrosc. 2009, 63, 1134–1141. [Google Scholar] [CrossRef]
- Noda, I. Two-dimensional infrared (2D IR) spectroscopy: Theory and applications. Appl. Spectrosc. 1990, 44, 550–561. [Google Scholar] [CrossRef]
- Noda, I. Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2017, 187, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Q.; Zhou, Q.; Qin, Z. Atlas of Two-Dimensional Correlation Infrared Spectroscopy for Traditional Chinese medicine Identification; Chemical Industry Press: Beijing, China, 2003; p. 3. [Google Scholar]
- Curley, D.M.; Kumosinski, T.F.; Unruh, J.J.; Farrell, H.M., Jr. Changes in the secondary structure of bovine casein by Fourier transform infrared spectroscopy: Effects of calcium and temperature. J. Dairy Sci. 1998, 81, 3154–3162. [Google Scholar] [CrossRef] [PubMed]
- Siddig, S.M.; Sulieman, A.M.E.; Salih, Z.A.; Abdelmuhsin, A.A. Quality characteristics of white cheese (Jibnabeida) produced using camel milk and mixture of camel milk and cow milk. Int. J. Food Sci. Nutr. Eng. 2016, 6, 49–54. [Google Scholar]
- Chen, C.L.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Byler, D.M.; Susi, H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolym. Orig. Res. Biomol. 1986, 25, 469–487. [Google Scholar] [CrossRef] [PubMed]
- Grewal, M.K.; Chandrapala, J.; Donkor, O.; Apostolopoulos, V.; Stojanovska, L.; Vasiljevic, T. Fourier transform infrared spectroscopy analysis of physicochemical changes in UHT milk during accelerated storage. Int. Dairy J. 2017, 66, 99–107. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta (BBA)-Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [PubMed]
- Dalgleish, D.G. Analysis by fast protein liquid chromatography of variants of κ-casein and their relevance to micellar structure and renneting. J. Dairy Res. 1986, 53, 43–51. [Google Scholar] [CrossRef]
- Luinge, H.J.; Hop, E.; Lutz, E.T.G.; Van Hemert, J.A.; De Jong, E.A.M. Determination of the fat, protein and lactose content of milk using Fourier transform infrared spectrometry. Anal. Chim. Acta 1993, 284, 419–433. [Google Scholar] [CrossRef]
- Boubellouta, T.; Galtier, V.; Dufour, É. Structural changes of milk components during acid-induced coagulation kinetics as studied by synchronous fluorescence and mid-infrared spectroscopy. Appl. Spectrosc. 2011, 65, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Guinee, T.P.; Fox, P.F. Salt in Cheese: Physical, Chemical and Biological Aspects; In Cheese: Chemistry, Physics and Microbiology, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2017; pp. 317–375. [Google Scholar]
- Casal, H.L.; Mantsch, H.H. Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim. Biophys. Acta-Rev. Biomembr. 1984, 779, 381–401. [Google Scholar] [CrossRef]
- Grappin, R.; Lefier, D.; Mazerolles, G. Analysis of milk and dairy products. Serv. Press. Spectrosc. Infrarouge Appl. Anal. 2006, 2, 583–626. [Google Scholar]
- Walter, L.; Shrestha, P.; Fry, R.; Leury, B.J.; Logan, A. Lipid metabolic differences in cows producing small or large milk fat globules: Fatty acid origin and degree of saturation. J. Dairy Sci. 2020, 103, 1920–1930. [Google Scholar] [CrossRef]
- Lamichhane, P.; Kelly, A.L.; Sheehan, J.J. Symposium review: Structure-function relationships in cheese. J. Dairy Sci. 2018, 101, 2692–2709. [Google Scholar] [CrossRef]
- Kappeler, S.R.; Farah, Z.; Puhan, Z. 5′-Flanking regions of camel milk genes are highly similar to homologue regions of other species and can be divided into two distinct groups. J. Dairy Sci. 2003, 86, 498–508. [Google Scholar] [CrossRef]
- Swaisgood, H.E. Characteristics of milk. In Fennema’s Food Chemistry; CRC Press: Boca Raton, FL, USA, 2007; pp. 897–934. ISBN 0429195273. [Google Scholar]
- Laleye, L.C.; Jobe, B.; Wasesa, A.A.H. Comparative study on heat stability and functionality of camel and bovine milk whey proteins. J. Dairy Sci. 2008, 91, 4527–4534. [Google Scholar] [CrossRef] [PubMed]
- Haddadin, M.S.Y.; Gammoh, S.I.; Robinson, R.K. Seasonal variations in the chemical composition of camel milk in Jordan. J. Dairy Res. 2008, 75, 8–12. [Google Scholar] [CrossRef]
- Attia, H.; Kherouatou, N.; Fakhfakh, N.; Khorchani, T.; Trigui, N. Dromedary milk fat: Biochemical, microscopic and rheological characteristics. J. Food Lipids 2000, 7, 95–112. [Google Scholar] [CrossRef]
Milk | pH | Fat (mg/g) | Protein (mg/g) | Lactose (mg/g) | Dry Matter (mg/g) | Freezing Point (m°C) |
---|---|---|---|---|---|---|
CaM | 6.45 ± 0.02 a | 25.95 ± 0.06 a | 29.32 ± 0.03 a | 51.63 ± 0.04 d | 107.24 ± 0.05 a | −563.63 ± 0.03 a |
CM | 6.55 ± 0.02 c | 38.03 ± 0.08 e | 33.82 ± 0.03 e | 49.49 ± 0.03 a | 131.30 ± 0.05 e | −539.46 ± 0.05 e |
CaM1:CM1 | 6.51 ± 0.03 bc | 32.28 ± 0.05 c | 31.03 ± 0.06 c | 50.05 ± 0.07 b | 123.95 ± 0.05 c | −555.08 ± 0.04 c |
CaM3:CM1 | 6.48 ± 0.02 ab | 31.26 ± 0.04 b | 30.64 ± 0.03 b | 51.14 ± 0.05 c | 121.27 ± 0.05 b | −561.55 ± 0.06 d |
CaM1:CM3 | 6.52 ± 0.02 bc | 36.32 ± 0.03 d | 33.12 ± 0.03 d | 49.94 ± 0.05 b | 129.92 ± 0.04 d | −552.48 ± 0.04 b |
Peak Position (cm−1) | 1540 cm−1 | 1607 cm−1 | 1650 cm−1 | 1700 cm−1 |
---|---|---|---|---|
1540 cm−1 | + | − (−) | + (+) | − (−) |
1607 cm−1 | + | − (−) | + (+) | |
1650 cm−1 | + | − (−) | ||
1700 cm−1 | + |
Peak Position (cm−1) | 2854 cm−1 | 2876 cm−1 | 2921 cm−1 | 3000 cm−1 |
---|---|---|---|---|
2854 cm−1 | + | + (+) | + (+) | − (+) |
2876 cm−1 | + | + (−) | − (+) | |
2921 cm−1 | + | + (−) | ||
3000 cm−1 | + |
Wavelength Range | Synchronous | Asynchronous | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensitivity (%) | Specificity (%) | Accuracy (%) | Error (%) | Sensitivity (%) | Specificity (%) | Accuracy (%) | Error (%) | ||||||||||
Cal | Pr | Cal | Pr | Cal | Pr | Cal | Pr | Cal | Pr | Cal | Pr | Cal | Pr | Cal | Pr | ||
Protein region (1700–1500 cm−1) | CM | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 |
CaM | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | |
CaM1CM1 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | |
CaM1CM3 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | |
CaM3CM1 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | |
mean | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | |
SD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
CM | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 75 | 100 | 88 | 0 | 13 | |
Fatty acid acyl-chain region (3000–2800 cm−1) | CaM | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 0 | 100 | 100 | 100 | 50 | 0 | 50 |
CaM1CM1 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | |
CaM1CM3 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | |
CaM3CM1 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | |
mean | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 80 | 100 | 95 | 100 | 88 | 0 | 13 | |
SD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 0 | 11 | 0 | 22 | 0 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukria, O.; El Hadrami, E.M.; Sultanova, S.; Alqurashi, R.M.; Cahyana, Y.; Aït-Kaddour, A. Monitoring Molecular Structure Changes of Cow and Camel Milk Mixtures during Coagulation: A Study Based on TPA and 2DCOS-MIR Spectroscopy. Chemosensors 2023, 11, 178. https://doi.org/10.3390/chemosensors11030178
Boukria O, El Hadrami EM, Sultanova S, Alqurashi RM, Cahyana Y, Aït-Kaddour A. Monitoring Molecular Structure Changes of Cow and Camel Milk Mixtures during Coagulation: A Study Based on TPA and 2DCOS-MIR Spectroscopy. Chemosensors. 2023; 11(3):178. https://doi.org/10.3390/chemosensors11030178
Chicago/Turabian StyleBoukria, Oumayma, El Mestafa El Hadrami, Shakhnoza Sultanova, Randah Miqbil Alqurashi, Yana Cahyana, and Abderrahmane Aït-Kaddour. 2023. "Monitoring Molecular Structure Changes of Cow and Camel Milk Mixtures during Coagulation: A Study Based on TPA and 2DCOS-MIR Spectroscopy" Chemosensors 11, no. 3: 178. https://doi.org/10.3390/chemosensors11030178
APA StyleBoukria, O., El Hadrami, E. M., Sultanova, S., Alqurashi, R. M., Cahyana, Y., & Aït-Kaddour, A. (2023). Monitoring Molecular Structure Changes of Cow and Camel Milk Mixtures during Coagulation: A Study Based on TPA and 2DCOS-MIR Spectroscopy. Chemosensors, 11(3), 178. https://doi.org/10.3390/chemosensors11030178