Fully Printed Organic Phototransistor Array with High Photoresponse and Low Power
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ink Preparation
2.3. Fabrication of the 10 × 10 OPT Array
2.4. OPT Electrical Characterization
3. Results and Discussion
3.1. Full Printing of the OPT Array
3.2. Electrical Performance of the Fully Printed OPT Array
3.3. Photoresponse of the Fully Printed OPTs
3.4. Imaging Function Demonstration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pierre, A.; Gaikwad, A.; Arias, A.C. Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors. Nat. Photonics 2017, 11, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Huang, W.T.; Pattanasattayavong, P.; Lim, J.; Li, R.P.; Sakai, N.; Panidi, J.; Hong, M.J.; Ma, C.; Wei, N.; et al. Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nat. Commun. 2019, 10, 4475. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.B.; Cheng, S.L.; Deng, W.; Tan, Y.; Lu, Z.J.; Shi, J.L.; Zhang, X.J.; Jie, J.S. Insights into the Origins of Minority Carrier Traps in Solution-Processed Organic Semiconductors and Their Effects on Transistor Photostability. Adv. Electron. Mater. 2022, 8, 2200355. [Google Scholar] [CrossRef]
- Xue, D.; Zhang, Y.Y.; Gong, W.J.; Yin, Y.; Wang, Z.; Huang, L.Z.; Chi, L.F. Interface terminal group regulated organic phototransistors with tunable persistent and switchable photoconductivity. Sci. China Chem. 2022, 65, 2567–2575. [Google Scholar] [CrossRef]
- He, Z.H.; Shen, H.G.; Ye, D.K.; Xiang, L.Y.; Zhao, W.R.; Ding, J.M.; Zhang, F.J.; Di, C.-a.; Zhu, D.B. An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 2021, 4, 522–529. [Google Scholar] [CrossRef]
- Zhang, L.; Song, I.; Ahn, J.; Han, M.; Linares, M.; Surin, M.; Zhang, H.J.; Oh, J.H.; Lin, J.B. pi-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. Nat. Commun. 2021, 12, 142. [Google Scholar] [CrossRef]
- Zhong, J.F.; Wu, X.M.; Lan, S.Q.; Fang, Y.; Chen, H.P.; Guo, T.L. High Performance Flexible Organic Phototransistors with Ultrashort Channel Length. ACS Photonics 2018, 5, 3712–3722. [Google Scholar] [CrossRef]
- Li, F.; Zheng, L.; Sun, Y.J.; Li, S.Y.; Sun, L.J.; Yang, F.X.; Dong, W.B.; Zhang, X.T.; Hu, W.P. Cocrystal engineering: Towards high-performance near-infrared organic phototransistors based on donor-acceptor charge transfer cocrystals. Sci. China Chem. 2022, 66, 266–272. [Google Scholar] [CrossRef]
- Han, C.; Liu, X.C.; Han, X.W.; He, M.Y.; Han, J.Y.; Zhang, H.; Hou, X.; Zhou, H.X.; Yu, H.; Wu, Z.M.; et al. High-Performance Phototransistor Based on Graphene/Organic Heterostructure for In-Chip Visual Processing and Pulse Monitoring. Adv. Funct. Mater. 2022, 32, 2209680. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, X.J.; Jia, R.F.; Huang, L.M.; Zhang, X.H.; Jie, J.S. Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system. NPG Asia Mater. 2019, 11, 77. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Lv, Y.; Ruan, X.B.; Zhang, X.J.; Jia, R.F.; Yu, Y.Q.; Liu, Z.K.; Wu, D.; Zhang, X.H.; Jie, J.S. Ultra-Sensitive and Low-Power-Consumption Organic Phototransistor Enables Nighttime Illumination Perception for Bionic Mesopic Vision. Laser Photonics Rev. 2022, 16, 2200283. [Google Scholar] [CrossRef]
- Gao, Y.H.; Yi, Y.; Wang, X.W.; Meng, H.; Lei, D.Y.; Yu, X.F.; Chu, P.K.; Li, J. A Novel Hybrid-Layered Organic Phototransistor Enables Efficient Intermolecular Charge Transfer and Carrier Transport for Ultrasensitive Photodetection. Adv. Mater. 2019, 31, e1900763. [Google Scholar] [CrossRef]
- Calvi, S.; Rapisarda, M.; Velletta, A.; Scagliotti, M.; De Rosa, S.; Tortora, L.; Branchini, P.; Mariucci, L. Highly sensitive organic phototransistor for flexible optical detector arrays. Org. Electron. 2022, 102, 106452. [Google Scholar] [CrossRef]
- Yu, H.Y.; Zhao, X.L.; Tan, M.Y.; Wang, B.; Zhang, M.X.; Wang, X.; Guo, S.L.; Tong, Y.H.; Tang, Q.X.; Liu, Y.C. Ultraflexible and Ultrasensitive Near-Infrared Organic Phototransistors for Hemispherical Biomimetic Eyes. Adv. Funct. Mater. 2022, 32, 2206765. [Google Scholar] [CrossRef]
- Qin, S.C.; Qin, X.; Du, Q.Q.; Gan, Y.Q.; Zhang, Y.T.; Wang, A.R.; Yan, X.L.; Dong, R.X.; Liu, Y.L.; Li, S.H.; et al. Self-assembled graphene/BUBD-1 hybrids for ultrasensitive organic phototransistors. J. Mater. Chem. C 2022, 10, 11710–11718. [Google Scholar] [CrossRef]
- Li, H.C.; Jiang, T.; Zheng, Y.S.; Zou, Y.; Qi, S.L.; Tian, G.F.; Ji, D.Y.; Li, L.Q.; Hu, W.P. Fluorinated Dielectrics-Modulated Organic Phototransistors and Flexible Image Sensors. Adv. Opt. Mater. 2022, 10, 2200614. [Google Scholar] [CrossRef]
- Wang, Z.P.; Liu, J.; Liu, X.S.; Jin, J.Y.; Liu, H.; Peng, K.; Peng, Z.S.; Wei, H.N.; Chu, W.G.; Fan, W.M.; et al. Template-Guided C8-BTBT/MAPbBr3/C8-BTBT Heterostructures for Broadband Bipolar Phototransistors. Adv. Mater. Interfaces 2022, 9, 2102344. [Google Scholar] [CrossRef]
- Du, Q.Q.; Qin, S.C.; Wang, Z.F.; Gan, Y.Q.; Zhang, Y.T.; Fan, L.S.; Liu, Y.L.; Li, S.H.; Dong, R.X.; Liu, C.L.; et al. Highly Sensitive and Ultrafast Organic Phototransistor Based on Rubrene Single Crystals. ACS Appl. Mater. Interfaces 2021, 13, 57735–57742. [Google Scholar] [CrossRef]
- Feng, G.X.; Zhu, M.; Lin, X.H.; Xu, L.; Gao, X.T. Preparation of a CuPc Organic Phototransistor and Research on its Dynamic Photoelectric Properties. Chem. Mater. 2021, 51, 133–140. [Google Scholar] [CrossRef]
- Huang, H.H.; Jiang, L.; Peng, J.L.; Qi, Y.M.; Bai, S.X.; Lin, Q.Q. High-Performance Organic Phototransistors Based on D18, a High-Mobility and Unipolar Polymer. Chem. Mater. 2021, 33, 8089–8096. [Google Scholar] [CrossRef]
- Lim, D.H.; Kang, M.; Jang, S.Y.; Hwang, K.; Kim, I.B.; Jung, E.; Jo, Y.R.; Kim, Y.J.; Kim, J.; Choi, H.; et al. Unsymmetrical Small Molecules for Broad-Band Photoresponse and Efficient Charge Transport in Organic Phototransistors. ACS Appl. Mater. Interfaces 2020, 12, 25066–25074. [Google Scholar] [CrossRef]
- Ren, X.B.; Lu, Z.J.; Zhang, X.J.; Grigorian, S.; Deng, W.; Jie, J.S. Low-Voltage Organic Field-Effect Transistors: Challenges, Progress, and Prospects. ACS Mater. Lett. 2022, 4, 1531–1546. [Google Scholar] [CrossRef]
- Duan, Y.W.; Zhang, B.W.; Zou, S.Z.; Fang, C.Q.; Wang, Q.J.; Shi, Y.; Li, Y. Low-power-consumption organic field-effect transistors. J. Phys. Mater. 2020, 3, 014009. [Google Scholar] [CrossRef]
- Yu, F.F.; Wu, S.H.; Wang, X.H.; Zhang, G.B.; Lu, H.B.; Qiu, L.Z. Flexible and low-voltage organic phototransistors. RSC Adv. 2017, 7, 11572–11577. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Dong, G.F.; Duan, L.; Wang, L.D.; Qiu, Y. High performance low-voltage organic phototransistors: Interface modification and the tuning of electrical, photosensitive and memory properties. J. Mater. Chem. 2012, 22, 11836–11842. [Google Scholar] [CrossRef]
- Wu, R.-J.; Hsu, Y.-L.; Chou, W.-Y.; Cheng, H.-L. Enhancing functionalities of organic ultraviolet-visible phototransistors incorporating spiropyran-merocyanine photochromic materials. J. Mater. Chem. A 2021, 9, 22522–22532. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhu, Y.M.; Wang, G.H.; Qiu, L.Z. Flexible and low-voltage phototransistor based on novel self-assembled phosphonic acids monolayers. Synthetic Met. 2020, 269, 116563. [Google Scholar] [CrossRef]
- Jiang, B.-Y.; Vegiraju, S.; Chiang, A.S.-T.; Chen, M.-C.; Liu, C.-L. Low-voltage-driven organic phototransistors based on a solution-processed organic semiconductor channel and high k hybrid gate dielectric. J. Mater. Chem. C 2017, 5, 9838–9842. [Google Scholar] [CrossRef]
- Zhao, C.B.; Ali, M.U.; Ning, J.Y.; Meng, H. Organic single crystal phototransistors: Recent approaches and achievements. Front. Phys. 2021, 16, 43202. [Google Scholar] [CrossRef]
- Tao, J.W.; Liu, D.; Qin, Z.S.; Shao, B.; Jing, J.B.; Li, H.X.; Dong, H.L.; Xu, B.; Tian, W.J. Organic UV-Sensitive Phototransistors Based on Distriphenylamineethynylpyrene Derivatives with Ultra-High Detectivity Approaching 1018. Adv. Mater. 2020, 32, 1907791. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, Y.C.; Li, X.Y.; Guo, Y.W.; Cao, S.Q.; Gao, H.F.; Wu, Y.C.; Jiang, L. Organic Single-Crystalline Microwire Arrays toward High-Performance Flexible Near-Infrared Phototransistors. Small 2022, 18, 2203429. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, G.; Inoue, S.; Higashino, T.; Ikawa, M.; Hayashi, T.; Matsuoka, S.; Arai, S.; Hasegawa, T. Meniscus-controlled printing of single-crystal interfaces showing extremely sharp switching transistor operation. Sci. Adv. 2020, 6, eabc8847. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Lei, H.M.; Zhang, X.J.; Sheng, F.M.; Shi, J.L.; Zhang, X.L.; Liu, X.Y.; Grigorian, S.; Zhang, X.H.; Jie, J.S. Scalable Growth of Organic Single-Crystal Films via an Orientation Filter Funnel for High-Performance Transistors with Excellent Uniformity. Adv. Mater. 2022, 34, 2109818. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, S.H.; Choi, H.H.; Kang, B.; Cho, K. Recent Advances in the Bias Stress Stability of Organic Transistors. Adv. Funct. Mater. 2020, 30, 1904590. [Google Scholar] [CrossRef]
- Iqbal, H.F.; Holland, E.K.; Anthony, J.E.; Jurchescu, O.D. Real-time monitoring of trap dynamics reveals the electronic states that limit charge transport in crystalline organic semiconductors. Mater. Horizons. 2020, 7, 2390–2398. [Google Scholar] [CrossRef]
- Totsuka, D.; Yanagida, T.; Fukuda, K.; Kawaguchi, N.; Fujimoto, Y.; Pejchal, J.; Yokota, Y.; Yoshikawa, A. Performance test of Si PIN photodiode line scanner for thermal neutron detection Nucl. Instrum. Methods Phys. Res. Sect. A 2011, 659, 399–402. [Google Scholar]
- Ryu, S.; Ha, N.Y.; Ahn, Y.H.; Park, J.Y.; Lee, S. Light intensity dependence of organic solar cell operation and dominance switching between Shockley–Read–Hall and bimolecular recombination losses. Sci. Rep. 2021, 11, 16781. [Google Scholar] [CrossRef]
- Dou, L.T.; Yang, Y.M.; You, J.B.; Hong, Z.R.; Chang, W.H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Gong, F.; Liu, J.K.; Jia, Y.; Zhao, S.F.; Liao, L.; Su, M.; Fan, Z.Y.; Chen, X.S.; Lu, W.; et al. Hybrid WSe(2)-In(2)O(3) Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents. ACS Appl. Mater. Interfaces 2017, 9, 34489–34496. [Google Scholar] [CrossRef]
- Jung, J.H.; Yoon, M.J.; Lim, J.W.; Lee, Y.H.; Lee, K.E.; Kim, D.H.; Oh, J.H. High-Performance UV-Vis-NIR Phototransistors Based on Single-Crystalline Organic Semiconductor-Gold Hybrid Nanomaterials. Adv. Funct. Mater. 2017, 27, 1604528. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Jo, S.; Kang, J.; Jo, J.W.; Lee, M.; Moon, J.; Yang, L.; Kim, M.G.; Kim, Y.H.; et al. Ultrahigh Detective Heterogeneous Photosensor Arrays with In-Pixel Signal Boosting Capability for Large-Area and Skin-Compatible Electronics. Adv. Mater. 2016, 28, 3078–3086. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Yao, Y.F.; Turetta, N.; Samorì, P. Vertical organic transistors with short channels for multifunctional optoelectronic devices. J. Mater. Chem. C 2022, 10, 2494–2506. [Google Scholar] [CrossRef]
- Yan, Y.J.; Chen, Q.Z.; Wang, X.M.; Liu, Y.Q.; Yu, R.J.; Gao, C.S.; Chen, H.P.; Guo, T.L. Vertical Channel Inorganic/Organic Hybrid Electrochemical Phototransistors with Ultrahigh Responsivity and Fast Response Speed. ACS Appl. Mater. Interfaces 2021, 13, 7498–7509. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Fu, H.J.; Li, N.; Hu, Y.H.; Chen, L.X.; Jia, W.Y.; Zhang, Q.M.; Lei, Y.L. Enabling Fast Photoresponse in Near-Infrared Organic Phototransistors by Manipulating Minority Charge Trapping and Recombination. Adv. Opt. Mater. 2022, 11, 2202008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Zhang, X.; Pan, R.; Deng, W.; Shi, J.; Lu, T.; Zhang, J.; Jie, J.; Zhang, X. Fully Printed Organic Phototransistor Array with High Photoresponse and Low Power. Chemosensors 2023, 11, 231. https://doi.org/10.3390/chemosensors11040231
Tan Y, Zhang X, Pan R, Deng W, Shi J, Lu T, Zhang J, Jie J, Zhang X. Fully Printed Organic Phototransistor Array with High Photoresponse and Low Power. Chemosensors. 2023; 11(4):231. https://doi.org/10.3390/chemosensors11040231
Chicago/Turabian StyleTan, Yuan, Xinwei Zhang, Rui Pan, Wei Deng, Jialin Shi, Tianxing Lu, Junye Zhang, Jiansheng Jie, and Xiujuan Zhang. 2023. "Fully Printed Organic Phototransistor Array with High Photoresponse and Low Power" Chemosensors 11, no. 4: 231. https://doi.org/10.3390/chemosensors11040231
APA StyleTan, Y., Zhang, X., Pan, R., Deng, W., Shi, J., Lu, T., Zhang, J., Jie, J., & Zhang, X. (2023). Fully Printed Organic Phototransistor Array with High Photoresponse and Low Power. Chemosensors, 11(4), 231. https://doi.org/10.3390/chemosensors11040231