LFA: The Mysterious Paper-Based Biosensor: A Futuristic Overview
Abstract
:1. Introduction
1.1. History of Lateral Flow Assay
1.2. Components of LFA
1.3. Principle of LFA
1.4. Manufacturing of LFA
1.5. Advantages and Disadvantages of Lateral-Flow-Assay-Based Biosensors
2. Different Formats of LFA
2.1. Sandwich Format & Competitive Format
2.2. Antibody and Aptamer-Based Formats
2.3. Multiplex Format and Nanoparticle-Based Formats
2.4. CRISPER-Based Format
3. Common Applications of LFA
3.1. COVID-19 (Coronavirus)
3.2. Diabetes
3.3. Pregnancy
3.4. Alzheimer’s Disease
3.5. Dengue Virus
4. Advanced and Futuristic Applications
4.1. Robotic-Based LFA Application
4.2. Cotton-Thread-Based LFA
4.3. LFA with Smartphone and AI/5G Technology/Telemedicine/E-Prescription
4.4. 3D Printing/Additive Manufacturing/Layer-by-Layer Overlapping of Materials/Rapid Prototyping-Based LFA
4.5. LFA Integrated with Portable Transducers
4.6. Flying LAB/Unmanned Aerial System/In-Flight Test/Lab on Drone Coupled with LFA (Lab-on-Drone)
4.7. Electronic LFA Strip (e-LFA Strip)/Papertronic-Based LFAs
Common Applications of LFA | |||||
---|---|---|---|---|---|
S.NO. | Lateral Flow Assay Type | Analytes/Diseases | Outcomes | Label Tag | References |
1. | LFA with CRISPR/Cas-9 | SARS-CoV-2 (ORF8a gene sequence) and influenza A/B and RS-virus (respiratory syncytial) | - | - | [47] |
CRISPR/Cas9-mediated triple-line lateral flow assay (TL-LFA) | Dual-gene testing of SARS-CoV-2 | 100-RNA copies/reaction (25 µL) | Gold NPs | [48] | |
LFA: nanoelectrokinetic (NEK) | SARS-CoV-2 | Increased limit of detection by 32-fold | Orange G color dye | [49] | |
Thermometric lateral flow immunoassay (LFIA) | COVID-19 | 1 × 105 particles/mm2 | Colored latex beads | [50] | |
RNA extraction-free LFA | SARS-CoV-2 | 99.9% accuracy | Cysteamine capped gold NPs | [51] | |
Nucleic acid-based LFA | SARS-CoV-2. | 300 aM & 500 aM | Gold NPs | [52] | |
2. | LFIA: sandwich format | Diabetes type 2 diabetes mellitus biomarker (HbA1c) | 4 percent (20 m mol−1) and 12 percent (108 m mol−1) | Colloidal gold | [53] |
Aptasensor sandwich-based LFA | Vaspin | 39 pg ML−1 | Fluorescent upconverting NPs | [54] | |
LFA | Glucose and glycation levels | R-squared values of 0.932 & 0.930, respectively | GNPs | [55] | |
LFA with a handheld reader | Glycated albumin and total serum albumin | GA (3 to 20 mg mL−1) and serum albumin assay (20 to 50 mg mL−1) | GNPs | [56] | |
3. | Portable test strip of LFA integrated with a smartphone | Pregnancy test: HCG | LOD of 3 ng/mL | Colloidal gold | [58] |
Multiplex-based LFA integrated with a smartphone-based imaging system | HCG and prostate-specific antigen | LOD of 1 ng mL−1 and (HCG) 0.1 ng mL−1 (PSA). | Persistent luminescent nanophosphors (green and blue emitting) | [59] | |
Lateral flow immunoassay with a machine learning model | HCG and myocardial infraction serum samples | HCG is 1–1000 mIU mL−1 | MNP, i.e., magnetic nanoparticles | [60] | |
4. | LFA with image analyzer | Alzheimer’s disease blood biomarkers (fetuin B & clusterin) | R2 values of 0.988 and 0.998, respectively | Gold nanoparticles | [6] |
Integrated LFA with colorimetric and Surface Enhanced Raman Scattering | Alzheimer’s disease blood biomarker: plasma phosphorylated tau | LOD of 60 pg/mL through naked eye and 3.8 pg/mL with SERS | NPs | [61] | |
5. | LFA | Dengue virus | LOD of 5.12 × 102 PFU | Gold nanoparticles | [62] |
LFA-based immunosensor | All four NS-1 serotypes | 0.1 to 1.3 ng/mL | Fluorescent nanodiamonds | [63] | |
LFA based on aptamers | Dengue virus | LOD of 24 pg/mL | GNPs | [64] | |
ADVANCED -APPLICATION OF LFA | |||||
1. | Lateral flow assay integrated with a robotic system | Antigen | - | - | [65] |
Rapid lateral flow assay coupled with an automated liquid-handling robot | Malaria antigen | - | Carboxylic blue latex beads or cellulose nanobeads | [66] | |
2. | LFA integrated with cotton thread | HIV-nucleic acid | 0.25 nM | GNPs | [69] |
3. | LFA-based smartphone | Food-born bacteria (E. coli O157:H7) | 104–105 CFU/mL | - | [70] |
LFA coupled with AI read | SARS-CoV-2 | Sensitivity enhanced with AI read (86.2%) compared to the human eye (71.4%) | GNPs | [71] | |
LFIA combined with AI | COVID-19 | LOD of 160 ng/mL | Polydopamine NPs | [72] | |
4. | LFIA with additive manufacturing technique | COVID-19 | - | GNPs | [76] |
3D printed and commercially available materials for the creation of LFA strips | C-Reactive Protein | - | GNPs | [77] | |
5. | LFIA coupled with the electrochemical-based transducers | HCG | - | GNPs | [78] |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, V.T.; Song, S.; Park, S.; Joo, C. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens. Bioelectron. 2020, 152, 112015. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Portable electrochemical systems. TrAC Trends Anal. Chem. 2002, 21, 226–232. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; McConnell, E.M.; Li, J.; Li, Y. Advances in functional nucleic acid based paper sensors. J. Mater. Chem. B 2020, 8, 3213–3230. [Google Scholar] [CrossRef]
- Brazaca, L.C.; Moreto, J.R.; Martín, A.; Tehrani, F.; Wang, J.; Zucolotto, V. Colorimetric paper-based immunosensor for simultaneous determination of fetuin B and clusterin toward early Alzheimer’s diagnosis. ACS Nano 2019, 13, 13325–13332. [Google Scholar] [CrossRef]
- Hasan, M.R.; Sharma, P.; Shaikh, S.; Singh, S.; Pilloton, R.; Narang, J. Electrochemical Aptasensor Developed Using Two-Electrode Setup and Three-Electrode Setup: Comprising Their Current Range in Context of Dengue Virus Determination. Biosensors 2022, 13, 1. [Google Scholar] [CrossRef]
- Beduk, T.; Beduk, D.; Hasan, M.R.; Guler Celik, E.; Kosel, J.; Narang, J.; Salama, K.N.; Timur, S. Smartphone-Based Multiplexed Biosensing Tools for Health Monitoring. Biosensors 2022, 12, 583. [Google Scholar] [CrossRef]
- Sajid, M.; Kawde, A.N.; Daud, M. Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 2015, 19, 689–705. [Google Scholar] [CrossRef]
- Anfossi, L.; Di Nardo, F.; Cavalera, S.; Giovannoli, C.; Baggiani, C. Multiplex lateral flow immunoassay: An overview of strategies towards high-throughput point-of-need testing. Biosensors 2018, 9, 2. [Google Scholar] [CrossRef]
- Bishop, J.D.; Hsieh, H.V.; Gasperino, D.J.; Weigl, B.H. Sensitivity enhancement in lateral flow assays: A systems perspective. Lab Chip 2019, 19, 2486–2499. [Google Scholar] [CrossRef]
- Gasperino, D.; Baughman, T.; Hsieh, H.V.; Bell, D.; Weigl, B.H. Improving lateral flow assay performance using computational modeling. Annu. Rev. Anal. Chem. 2018, 11, 219–244. [Google Scholar] [CrossRef]
- Rohrman, B.A.; Leautaud, V.; Molyneux, E.; Richards-Kortum, R.R. A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS ONE 2012, 7, e45611. [Google Scholar] [CrossRef]
- Hasan, M.R.; Anzar, N.; Tyagi, M.; Yadav, N.; Narang, J. Lab-on-a-Chip Devices—Advancement in the Designing of Biosensors. In Functionalized Nanomaterials Based Devices for Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 175–198. [Google Scholar]
- Parolo, C.; Sena-Torralba, A.; Bergua, J.F.; Calucho, E.; Fuentes-Chust, C.; Hu, L.; Rivas, L.; Álvarez-Diduk, R.; Nguyen, E.P.; Cinti, S.; et al. Tutorial: Design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat. Protoc. 2020, 15, 3788–3816. [Google Scholar] [CrossRef]
- Mak, W.C.; Beni, V.; Turner, A.P. Lateral-flow technology: From visual to instrumental. TrAC Trends Anal. Chem. 2016, 79, 297–305. [Google Scholar] [CrossRef]
- Miočević, O.; Cole, C.R.; Laughlin, M.J.; Buck, R.L.; Slowey, P.D.; Shirtcliff, E.A. Quantitative lateral flow assays for salivary biomarker assessment: A review. Front. Public Health 2017, 5, 133. [Google Scholar] [CrossRef]
- O’Farrell, B. Evolution in lateral flow–based immunoassay systems. In Lateral Flow Immunoassay; Humana Press: Totowa, NJ, USA, 2009; pp. 1–33. [Google Scholar]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef]
- Ettre, L.S. The birth of partition chromatography. LC-GC N. Am. 2001, 19, 506. [Google Scholar]
- Consden, R.; Gordon, A.H.; Martin, A.J. A study of the acidic peptides formed on the partial acid hydrolysis of wool. Biochem. J. 1949, 44, 548. [Google Scholar] [CrossRef]
- Liana, D.D.; Raguse, B.; Gooding, J.J.; Chow, E. Recent advances in paper-based sensors. Sensors 2012, 12, 11505–11526. [Google Scholar] [CrossRef]
- Carrell, C.; Kava, A.; Nguyen, M.; Menger, R.; Munshi, Z.; Call, Z.; Nussbaum, M.; Henry, C. Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectron. Eng. 2019, 206, 45–54. [Google Scholar] [CrossRef]
- Jauset-Rubio, M.; Svobodová, M.; Mairal, T.; McNeil, C.; Keegan, N.; Saeed, A.; Abbas, M.N.; El-Shahawi, M.S.; Bashammakh, A.S.; Alyoubi, A.O. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci. Rep. 2016, 6, 37732. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.dailyrounds.org/blog/meet-this-padma-shri-recipient-whose-kit-can-diagnose-dengue-in-15-minutes/ (accessed on 6 March 2023).
- Martiskainen, I.; Talha, S.M.; Vuorenpää, K.; Salminen, T.; Juntunen, E.; Chattopadhyay, S.; Kumar, D.; Vuorinen, T.; Pettersson, K.; Khanna, N.; et al. Upconverting nanoparticle reporter–based highly sensitive rapid lateral flow immunoassay for hepatitis B virus surface antigen. Anal. Bioanal. Chem. 2021, 413, 967–978. [Google Scholar] [CrossRef]
- Martiskainen, I.; Juntunen, E.; Salminen, T.; Vuorenpää, K.; Bayoumy, S.; Vuorinen, T.; Khanna, N.; Pettersson, K.; Batra, G.; Talha, S.M. Double-antigen lateral flow immunoassay for the detection of anti-HIV-1 and-2 antibodies using upconverting nanoparticle reporters. Sensors 2021, 21, 330. [Google Scholar] [CrossRef] [PubMed]
- Bahadır, E.B.; Sezgintürk, M.K. Lateral flow assays: Principles, designs and labels. TrAC Trends Anal. Chem. 2016, 82, 286–306. [Google Scholar] [CrossRef]
- Banerjee, R.; Jaiswal, A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018, 143, 1970–1996. [Google Scholar] [CrossRef]
- Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar]
- Hasan, M.R.; Suleman, S.; Narang, J. Lab-on-paper based devices for COVID-19 sensors. In Sensing Tools and Techniques for COVID-19; Elsevier: Amsterdam, The Netherlands, 2022; pp. 25–47. [Google Scholar]
- Ince, B.; Sezgintürk, M.K. Lateral flow assays for viruses diagnosis: Up-to-date technology and future prospects. TrAC Trends Anal. Chem. 2022, 157, 116725. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Xu, X.; Guo, L.; Xu, L.; Sun, M.; Hu, S.; Kuang, H.; Xu, C.; Li, A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. Small Methods 2022, 6, 2101143. [Google Scholar] [CrossRef]
- Chen, A.; Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 2015, 71, 230–242. [Google Scholar] [CrossRef]
- Castrejón-Jiménez, N.S.; García-Pérez, B.E.; Reyes-Rodríguez, N.E.; Vega-Sánchez, V.; Martínez-Juárez, V.M.; Hernández-González, J.C. Challenges in the detection of SARS-CoV-2: Evolution of the lateral flow immunoassay as a valuable tool for viral diagnosis. Biosensors 2022, 12, 728. [Google Scholar] [CrossRef]
- Malode, S.J.; Sharma, P.; Hasan, M.R.; Shetti, N.P.; Mascarenhas, R.J. Carbon and carbon paste electrodes. In Electrochemical Sensors; Woodhead Publishing: Cambridge, UK, 2022; pp. 79–114. [Google Scholar]
- Bishoyi, A.; Alam, M.A.; Hasan, M.R.; Khanuja, M.; Pilloton, R.; Narang, J. Cyclic Voltammetric-Paper-Based Genosensor for Detection of the Target DNA of Zika Virus. Micromachines 2022, 13, 2037. [Google Scholar] [CrossRef]
- Hasan, M.R.; Sharma, P.; Pilloton, R.; Khanuja, M.; Narang, J. Colorimetric biosensor for the naked-eye detection of ovarian cancer biomarker PDGF using citrate modified gold nanoparticles. Biosens. Bioelectron. X 2022, 11, 100142. [Google Scholar] [CrossRef]
- Majdinasab, M.; Badea, M.; Marty, J.L. Aptamer-Based lateral flow assays: Current trends in clinical diagnostic rapid tests. Pharmaceuticals 2022, 15, 90. [Google Scholar] [CrossRef]
- Jaisankar, A.; Krishnan, S.; Rangasamy, L. Recent developments of aptamer-based lateral flow assays for point-of-care (POC) diagnostics. Anal. Biochem. 2022, 65, 114874. [Google Scholar] [CrossRef]
- Sena-Torralba, A.; Álvarez-Diduk, R.; Parolo, C.; Piper, A.; Merkoçi, A. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chem. Rev. 2022, 122, 14881–14910. [Google Scholar] [CrossRef]
- Soh, J.H.; Chan, H.M.; Ying, J.Y. Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today 2020, 30, 100831. [Google Scholar] [CrossRef]
- Mahmoudi, T.; de la Guardia, M.; Baradaran, B. Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends. TrAC Trends Anal. Chem. 2020, 125, 115842. [Google Scholar] [CrossRef]
- Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015, 73, 47–63. [Google Scholar] [CrossRef]
- Ma, J.; Lyu, Y.; Liu, X.; Jia, X.; Cui, F.; Wu, X.; Deng, S.; Yue, C. Engineered probiotics. Microb. Cell Factories 2022, 21, 72. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, A.; Tirpude, N.V.; Thakur, S.; Kumar, S. Combating the Progression of Novel Coronavirus SARS-CoV-2 Infectious Disease: Current State and Future Prospects in Molecular Diagnostics and Drug Discovery. Curr. Mol. Med. 2023, 23, 127–146. [Google Scholar] [CrossRef] [PubMed]
- Osborn, M.J.; Bhardwaj, A.; Bingea, S.P.; Knipping, F.; Feser, C.J.; Lees, C.J.; Collins, D.P.; Steer, C.J.; Blazar, B.R.; Tolar, J. CRISPR/Cas9-based lateral flow and fluorescence diagnostics. Bioengineering 2021, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Xiong, E.; Jiang, L.; Tian, T.; Hu, M.; Yue, H.; Huang, M.; Lin, W.; Jiang, Y.; Zhu, D.; Zhou, X. Simultaneous dual-gene diagnosis of SARS-CoV-2 based on CRISPR/Cas9-mediated lateral flow assay. Angew. Chem. Int. Ed. 2021, 60, 5307–5315. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Yoo, Y.K.; Lee, N.E.; Lee, J.; Kim, K.H.; Lee, S.; Kim, J.; Park, S.J.; Lee, D.; Lee, S.W.; et al. Nanoelectrokinetic-assisted lateral flow assay for COVID-19 antibody test. Biosens. Bioelectron. 2022, 212, 114385. [Google Scholar] [CrossRef]
- Azuma, T.; Hui, Y.Y.; Chen, O.Y.; Wang, Y.L.; Chang, H.C. Thermometric lateral flow immunoassay with colored latex beads as reporters for COVID-19 testing. Sci. Rep. 2022, 12, 3905. [Google Scholar] [CrossRef]
- Dighe, K.; Moitra, P.; Alafeef, M.; Gunaseelan, N.; Pan, D. A rapid RNA extraction-free lateral flow assay for molecular point-of-care detection of SARS-CoV-2 augmented by chemical probes. Biosens. Bioelectron. 2022, 200, 113900. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, S.; Han, J.; Kim, J.H.; Park, K.S. Equipment-free, salt-mediated immobilization of nucleic acids for nucleic acid lateral flow assays. Sens. Actuators B Chem. 2022, 351, 130975. [Google Scholar] [CrossRef]
- Ang, S.H.; Yu, C.Y.; Ang, G.Y.; Chan, Y.Y.; binti Alias, Y.; Khor, S.M. A colloidal gold-based lateral flow immunoassay for direct determination of haemoglobin A1c in whole blood. Anal. Methods 2015, 7, 3972–3980. [Google Scholar] [CrossRef]
- Ali, M.; Sajid, M.; Khalid, M.A.; Kim, S.W.; Lim, J.H.; Huh, D.; Choi, K.H. A fluorescent lateral flow biosensor for the quantitative detection of Vaspin using upconverting nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 226, 117610. [Google Scholar] [CrossRef]
- Ki, H.; Jang, H.; Oh, J.; Han, G.R.; Lee, H.; Kim, S.; Kim, M.G. Simultaneous detection of serum glucose and glycated albumin on a paper-based sensor for acute hyperglycemia and diabetes mellitus. Anal. Chem. 2020, 92, 11530–11534. [Google Scholar] [CrossRef]
- Belsare, S.; Tseng, D.; Ozcan, A.; Coté, G. Monitoring gestational diabetes at the point-of-care via dual glycated albumin lateral flow assays in conjunction with a handheld reader. Analyst 2022, 147, 5518–5527. [Google Scholar] [CrossRef]
- Kasetsirikul, S.; Shiddiky, M.J.; Nguyen, N.T. Challenges and perspectives in the development of paper-based lateral flow assays. Microfluid. Nanofluidics 2020, 24, 17. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, H.B.; Zhong, Z.T.; Li, C.Q.; Chen, W.; Liu, B.; Zhao, Y.D. A smartphone-based rapid quantitative detection platform for lateral flow strip of human chorionic gonadotropin with optimized image algorithm. Microchem. J. 2020, 157, 105038. [Google Scholar] [CrossRef]
- Danthanarayana, A.N.; Finley, E.; Vu, B.; Kourentzi, K.; Willson, R.C.; Brgoch, J. A multicolor multiplex lateral flow assay for high-sensitivity analyte detection using persistent luminescent nanophosphors. Anal. Methods 2020, 12, 272–280. [Google Scholar] [CrossRef]
- Yan, W.; Wang, K.; Xu, H.; Huo, X.; Jin, Q.; Cui, D. Machine learning approach to enhance the performance of MNP-labeled lateral flow immunoassay. Nano-Micro Lett. 2019, 11, 7. [Google Scholar] [CrossRef]
- Zhang, L.; Su, Y.; Liang, X.; Cao, K.; Luo, Q.; Luo, H. Ultrasensitive and point-of-care detection of plasma phosphorylated tau in Alzheimer’s disease using colorimetric and surface-enhanced Raman scattering dual-readout lateral flow assay. Nano Res. 2023, 1–11. [Google Scholar] [CrossRef]
- Martinez-Liu, C.; Machain-Williams, C.; Martinez-Acuña, N.; Lozano-Sepulveda, S.; Galan-Huerta, K.; Arellanos-Soto, D.; Meléndez-Villanueva, M.; Ávalos-Nolazco, D.; Pérez-Ibarra, K.; Galindo-Rodríguez, S.; et al. Development of a Rapid Gold Nanoparticle-Based Lateral Flow Immunoassay for the Detection of Dengue Virus. Biosensors 2022, 12, 495. [Google Scholar] [CrossRef]
- Le, T.N.; Hsiao, W.W.; Cheng, Y.Y.; Lee, C.C.; Huynh, T.T.; Pham, D.M.; Chen, M.; Jen, M.W.; Chang, H.C.; Chiang, W.H. Spin-Enhanced Lateral Flow Immunoassay for High-Sensitivity Detection of Nonstructural Protein NS1 Serotypes of the Dengue Virus. Anal. Chem. 2022, 94, 17819–17826. [Google Scholar] [CrossRef]
- Lu, M. Ultra-Sensitive Aptamer-Based Lateral Flow Assays for DENV Detection. Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2023. [Google Scholar]
- Huynh, T.; Anderson, C.E.; Gasperino, D.J.; Harston, S.P.; Hsieh, H.V.; Marzan, R.; Williford, J.R.; Oncina, C.I.; Glukhova, V.A.; Cate, D.M.; et al. Integrated robotic system for the development lateral flow assays. In Proceedings of the 2019 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 17 October 2019; pp. 1–4. [Google Scholar]
- Anderson, C.E.; Huynh, T.; Gasperino, D.J.; Alonzo, L.F.; Cantera, J.L.; Harston, S.P.; Hsieh, H.V.; Marzan, R.; McGuire, S.K.; Williford, J.R.; et al. Automated liquid handling robot for rapid lateral flow assay development. Anal. Bioanal. Chem. 2022, 414, 2607–2618. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Araújo, D.A.; Pradela-Filho, L.A.; Takeuchi, R.M.; Trindade, M.A.; Dos Santos, A.L. Threads in tubing: An innovative approach towards improved electrochemical thread-based microfluidic devices. Lab Chip 2022, 22, 3045–3054. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, T.; Wang, W.; Wen, Y.; Li, K.; Qian, L.; Zhang, X.; Liu, G. Lateral flow biosensors based on the use of micro-and nanomaterials: A review on recent developments. Microchim. Acta 2020, 187, 70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.F.; Liu, L.N.; Tang, R.H.; Liu, Z.; He, X.C.; Qu, Z.G.; Li, F. Sensitivity enhancement of lateral flow assay by embedding cotton threads in paper. Cellulose 2019, 26, 8087–8099. [Google Scholar] [CrossRef]
- Jung, Y.; Heo, Y.; Lee, J.J.; Deering, A.; Bae, E. Smartphone-based lateral flow imaging system for detection of food-borne bacteria E. coli O157: H7. J. Microbiol. Methods 2020, 168, 105800. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Kohn, M.A.; Bollyky, J.; Parsonnet, J. Validity of at-home rapid antigen lateral flow assay and artificial intelligence read to detect SARS-CoV-2. Diagn. Microbiol. Infect. Dis. 2022, 104, 115763. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Cao, C.; You, M.; Han, S.; Liu, Z.; Xiao, Y.; He, W.; Liu, C.; Peng, P.; Xue, Z.; et al. Artificial intelligence-assisted colorimetric lateral flow immunoassay for sensitive and quantitative detection of COVID-19 neutralizing antibody. Biosens. Bioelectron. 2022, 213, 114449. [Google Scholar] [CrossRef]
- Remaggi, G.; Zaccarelli, A.; Elviri, L. 3D Printing Technologies in Biosensors Production: Recent Developments. Chemosensors 2022, 10, 65. [Google Scholar] [CrossRef]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A review of 3D printing technology for medical applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Jones, A.; Rusling, J.F. 3D-printed biosensor arrays for medical diagnostics. Micromachines 2018, 9, 394. [Google Scholar] [CrossRef]
- Alrashoudi, A.A.; Albalawi, H.I.; Aldoukhi, A.H.; Moretti, M.; Bilalis, P.; Abedalthagafi, M.; Hauser, C.A. Fabrication of a lateral flow assay for rapid in-field detection of COVID-19 antibodies using additive manufacturing printing technologies. Int. J. Bioprint. 2021, 7, 399. [Google Scholar] [CrossRef]
- Han, W.; Shin, J.H. Low-cost, open-source 3D printed antibody dispenser for development and small-scale production of lateral flow assay strips. HardwareX 2021, 9, e00188. [Google Scholar] [CrossRef]
- Hamad, E.M.; Hawamdeh, G.; Jarrad, N.A.; Yasin, O.; Al-Gharabli, S.I.; Shadfan, R. Detection of Human Chorionic Gonadotropin (hCG) Hormone using Digital Lateral Flow Immunoassay. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18 July 2018; pp. 3845–3848. [Google Scholar]
- Poljak, M.; Šterbenc, A. Use of drones in clinical microbiology and infectious diseases: Current status, challenges and barriers. Clin. Microbiol. Infect. 2020, 26, 425–430. [Google Scholar] [CrossRef]
- Zarei, M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC Trends Anal. Chem. 2017, 91, 26–41. [Google Scholar] [CrossRef]
- Dawoud, A.; Mia, R.; Biswakarma, A.; Motchaalangaram, J.; Miao, W.; Wallace, K. Embedded Electrochemistry with a Miniaturized, Drone-Based, Potentiostat System for Remote Detection Chemical Warfare Agents. Int. J. Aerosp. Mech. Eng. 2022, 16, 112–115. [Google Scholar]
- Priye, A.; Wong, S.; Bi, Y.; Carpio, M.; Chang, J.; Coen, M.; Cope, D.; Harris, J.; Johnson, J.; Keller, A.; et al. Lab-on-a-drone: Toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal. Chem. 2016, 88, 4651–4660. [Google Scholar] [CrossRef]
- Nie, S.; Hao, N.; Zhang, K.; Xing, C.; Wang, S. Cellulose nanofibrils-based thermally conductive composites for flexible electronics: A mini review. Cellulose 2020, 27, 4173–4187. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, Z.; Preston, C.; Li, Y.; Hu, L. Transparent paper: Fabrications, properties, and device applications. Energy Environ. Sci. 2014, 7, 269–287. [Google Scholar] [CrossRef]
- Hasan, M.R.; Sharma, P.; Suleman, S.; Mukherjee, S.; Celik, E.G.; Timur, S.; Pilloton, R.; Narang, J. Papertronics: Marriage between Paper and Electronics Becoming a Real Scenario in Resource-Limited Settings. ACS Appl. Bio Mater. 2023, 6, 1368–1379. [Google Scholar] [CrossRef]
- Shu, R.; Liang, Y.; Liu, S.; Dou, L.; Bu, T.; Wang, S.; Lan, X.; Zhang, D.; Sun, J.; Zhu, M.; et al. From food waste to food supervision—Cuttlefish Ink Natural Nanoparticles-Driven Dual-mode Lateral Flow Immunoassay for Advancing Point-of-Care Tests. Biosens. Bioelectron. 2023, 219, 114807. [Google Scholar] [CrossRef]
- Mao, M.; Chen, X.; Cai, Y.; Yang, H.; Zhang, C.; Zhang, Y.; Wang, Z.; Peng, C. Accelerated and signal amplified nanozyme-based lateral flow assay of acetamiprid based on bivalent triple helix aptamer. Sens. Actuators B Chem. 2023, 378, 133148. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Pan, Y.; Zhu, Y.; Wang, Y.; Chen, S.; Wei, X. Au@ Ag-labeled SERS lateral flow assay for highly sensitive detection of allergens in milk. Food Sci. Hum. Wellness 2023, 12, 912–919. [Google Scholar] [CrossRef]
S.NO. | Advantages | Disadvantages |
---|---|---|
1. |
|
|
2. | Ease of device preparation | From one batch to the next, reproducibility varies |
3. | Extremely long shelf life and environmental stability across a wide range | Most of the devices are capable of simultaneously detecting more than one or two analytes |
4. |
| Poor affinity of biomolecules for analytes and a tendency for cross-reactivity.
|
5. | Requirement of small sample volume |
|
6. | Most of the time allows sample application without pretreatment |
|
7. |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Hasan, M.R.; Jain, A.; Pilloton, R.; Narang, J. LFA: The Mysterious Paper-Based Biosensor: A Futuristic Overview. Chemosensors 2023, 11, 255. https://doi.org/10.3390/chemosensors11040255
Singh S, Hasan MR, Jain A, Pilloton R, Narang J. LFA: The Mysterious Paper-Based Biosensor: A Futuristic Overview. Chemosensors. 2023; 11(4):255. https://doi.org/10.3390/chemosensors11040255
Chicago/Turabian StyleSingh, Saumitra, Mohd. Rahil Hasan, Akshay Jain, Roberto Pilloton, and Jagriti Narang. 2023. "LFA: The Mysterious Paper-Based Biosensor: A Futuristic Overview" Chemosensors 11, no. 4: 255. https://doi.org/10.3390/chemosensors11040255
APA StyleSingh, S., Hasan, M. R., Jain, A., Pilloton, R., & Narang, J. (2023). LFA: The Mysterious Paper-Based Biosensor: A Futuristic Overview. Chemosensors, 11(4), 255. https://doi.org/10.3390/chemosensors11040255