Accelerated Deactivation of Mesoporous Co3O4-Supported Au–Pd Catalyst through Gas Sensor Operation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensor Preparation for Gas Characterization
2.3. Gas Sensitive Characterization
2.4. Electron Microscopy Investigations
3. Results and Discussion
3.1. Characterization of Gas Sensors
3.2. Morphological Characterization
3.3. Mechanism of Thermal Deactivation of Catalysts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gervasini, A.; Vezzoli, G.C.; Regaini, V. VOC removal by synergic effect of combustion catalyst and ozone. Catal. Today 1996, 29, 449–455. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, Z.; Shangguan, W. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal. Today 2016, 264, 270–278. [Google Scholar] [CrossRef]
- Fernández, J.; Marín, P.; Díez, F.V.; Ordóñez, S. Coal mine ventilation air methane combustion in a catalytic reverse flow reactor: Influence of emission humidity. Fuel Process. Technol. 2015, 133, 202–209. [Google Scholar] [CrossRef]
- Cargnello, M.; Delgado Jaén, J.J.; Hernández Garrido, J.C.; Bakhmutsky, K.; Montini, T.; Calvino Gámez, J.J.; Gorte, R.J.; Fornasiero, P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 2012, 337, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Khivantsev, K.; Wang, Y. Low-Temperature Methane Oxidation for Efficient Emission Control in Natural Gas Vehicles: Pd and Beyond. ACS Catal. 2020, 10, 14304–14314. [Google Scholar] [CrossRef]
- Neyestanaki, A.K.; Klingstedt, F.; Salmi, T.; Murzin, D.Y. Deactivation of postcombustion catalysts, a review. Fuel 2004, 83, 395–408. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, J.; Xie, S.; Yang, H.; Zhao, X.; Zhang, K.; Lin, H.; Dai, H.; Guo, G. Mesoporous Cr2O3-supported Au–Pd nanoparticles: High-performance catalysts for the oxidation of toluene. Microporous Mesoporous Mater. 2016, 224, 311–322. [Google Scholar] [CrossRef]
- Lee, D.-S.; Chen, Y.-W. The mutual promotional effect of Au–Pd/CeO2 bimetallic catalysts on destruction of toluene. J. Taiwan Inst. Chem. Eng. 2013, 44, 40–44. [Google Scholar] [CrossRef]
- Xie, S.; Liu, Y.; Deng, J.; Zhao, X.; Yang, J.; Zhang, K.; Han, Z.; Arandiyan, H.; Dai, H. Effect of transition metal doping on the catalytic performance of Au–Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Appl. Catal. B Environ. 2017, 206, 221–232. [Google Scholar] [CrossRef]
- Li, R.; Jin, B.; Ma, T.; Liang, Y.; Wei, Y.; Yu, X.; Li, J.; Liu, J.; Zhao, Z. Highly Efficient Catalysts of AuPd Alloy Nanoparticles Supported on 3D Ordered Macroporous Al2O3 for Soot Combustion. ChemCatChem 2022, 624, 118302. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, J.; Liu, Y.; Xie, S.; Jiang, Y.; Zhao, X.; Yang, J.; Arandiyan, H.; Guo, G.; Dai, H. Three-dimensionally ordered mesoporous Co3O4-supported Au–Pd alloy nanoparticles: High-performance catalysts for methane combustion. J. Catal. 2015, 332, 13–24. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, J.; Liu, Y.; Yang, H.; Xie, S.; Wu, Z.; Dai, H. Three-dimensionally ordered macroporous CoCr2O4-supported Au–Pd alloy nanoparticles: Highly active catalysts for methane combustion. Catal. Today 2017, 281, 467–476. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Deng, J.; Zhang, Y.; Xie, S.; Zhao, X.; Wang, Z.; Guo, G.; Dai, H. 3DOM LaMnAl11O19-supported AuPd alloy nanoparticles: Highly active catalysts for methane combustion in a continuous-flow microreactor. Catal. Today 2018, 308, 71–80. [Google Scholar] [CrossRef]
- Yang, N.; Liu, J.; Sun, Y.; Zhu, Y. Au@PdOx with a PdOx-rich shell and Au-rich core embedded in Co3O4 nanorods for catalytic combustion of methane. Nanoscale 2017, 9, 2123–2128. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Y.; Zhou, H.; Huang, W.; Pu, Z. Combustion of lean methane over Co3O4 catalysts prepared with different cobalt precursors. RSC Adv. 2020, 10, 4490–4498. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Peng, Q.; Li, Y. Low-temperature CH4 Catalytic Combustion over Pd Catalyst Supported on Co3O4 Nanocrystals with Well-Defined Crystal Planes. ChemCatChem 2011, 3, 868–874. [Google Scholar] [CrossRef]
- Hu, L.; Peng, Q.; Li, Y. Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137. [Google Scholar] [CrossRef] [PubMed]
- Ercolino, G.; Stelmachowski, P.; Grzybek, G.; Kotarba, A.; Specchia, S. Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane. Appl. Catal. B Environ. 2017, 206, 712–725. [Google Scholar] [CrossRef]
- Datye, A.K.; Votsmeier, M. Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. 2021, 20, 1049–1059. [Google Scholar] [CrossRef]
- Goodman, E.D.; Johnston-Peck, A.C.; Dietze, E.M.; Wrasman, C.J.; Hoffman, A.S.; Abild-Pedersen, F.; Bare, S.R.; Plessow, P.N.; Cargnello, M. Supported Catalyst Deactivation by Decomposition into Single Atoms Is Suppressed by Increasing Metal Loading. Nat. Catal. 2019, 2, 748–755. [Google Scholar] [CrossRef]
- Qu, Q.; Zhang, J.-H.; Wang, J.; Li, Q.-Y.; Xu, C.-W.; Lu, X. Three-dimensional ordered mesoporous Co3O4 enhanced by Pd for oxygen evolution reaction. Sci. Rep. 2017, 7, 41542. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Gao, H.; Diehle, P.; Altmann, F.; Tarantik, K.; Schmitt, K.; Wollenstein, J. Au-Pd@Meso-Co3O4: A Promising Material for New Generation Pellistor with Low Working Temperature. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 1195–1198. [Google Scholar]
- Lyu, X.; Gao, H.; Diehle, P.; Schmitt, K.; Tarantik, K.R.; Wöllenstein, J. Niedertemperatur-Pellistoren mit Au-Pd-imprägniertem mesoporösem Co3O4 als katalytische Schicht: Pellistors with Au-Pd-impregnated mesoporous Co3O4 as a catalytic layer for low-temperature operation. tm—Tech. Mess. 2020, 87, 514–522. [Google Scholar] [CrossRef]
- Miller, J.B. Catalytic sensors for monitoring explosive atmospheres. IEEE Sens. J. 2001, 1, 88–93. [Google Scholar] [CrossRef]
- Dücso, C.; Ádám, M.; Fürjes, P.; Hirschfelder, M.; Kulinyi, S.; Bársony, I. Explosion-proof monitoring of hydrocarbons by mechanically stabilised, integrable calorimetric microsensors. Sens. Actuators B 2003, 95, 189–194. [Google Scholar] [CrossRef]
- Lueptow, R.; Phillips, S. Acoustic sensor for determining combustion properties. Meas. Sci. Technol. 1994, 5, 1375–1381. [Google Scholar] [CrossRef]
- Bársony, I.; Fürjes, P.; Ádám, M.; Dücső, C.; Vízváry, Z.; Zettner, J.; Stam, F. Thermal response of microfilament heaters in gas sensing. Sens. Actuators B 2004, 103, 442–447. [Google Scholar] [CrossRef]
- Bierer, B.; Grgic, D.; Yurchenko, O.; Engel, L.; Pernau, H.; Reindl, L.; Wöllenstein, J. Wireless low-power warning system for the detection of flammable gases. In Proceedings of the SMSI 2020 Conference; AMA Association for Sensors and Measurement: Berlin, Germany, 2020; pp. 121–122. [Google Scholar] [CrossRef]
- Bierer, B.; Grgić, D.; Yurchenko, O.; Engel, L.; Pernau, H.-F.; Jägle, M.; Reindl, L.; Wöllenstein, J. Low-power sensor node for the detection of methane and propane. J. Sens. Sens. Syst. 2021, 10, 185–191. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, J.; Li, Y.; Zhao, Z.; Song, W.; Wei, Y. Mesoporous Co3O4 supported Pt catalysts for low-temperature oxidation of acetylene. RSC Adv. 2017, 7, 18592–18600. [Google Scholar] [CrossRef]
- Chen, J.; Zou, X.; Rui, Z.; Ji, H. Deactivation Mechanism, Countermeasures, and Enhanced CH4 Oxidation Performance of Nickel/Cobalt Oxides. Energy Technol. 2020, 8, 1900641. [Google Scholar] [CrossRef]
- Kleitz, F.; Choi, S.H.; Ryoo, R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 17, 2136–2137. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, O.; Pernau, H.-F.; Engel, L.; Bierer, B.; Jägle, M.; Wöllenstein, J. Impact of particle size and morphology of cobalt oxide on the thermal response to methane examined by thermal analysis. J. Sens. Sens. Syst. 2021, 10, 37–42. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, H.; Law, C.K. Kinetics of catalytic oxidation of methane, ethane and propane over palladium oxide. Combust. Flame 2014, 161, 1048–1054. [Google Scholar] [CrossRef]
- Murata, K.; Ohyama, J.; Yamamoto, Y.; Arai, S.; Satsuma, A. Methane Combustion over Pd/Al2O3 Catalysts in the Presence of Water: Effects of Pd Particle Size and Alumina Crystalline Phase. ACS Catal. 2020, 10, 8149–8156. [Google Scholar] [CrossRef]
- Finocchio, E.; Willey, R.J.; Busca, G.; Lorenzelli, V. FTIR studies on the selective oxidation and combustion of light hydrocarbons. J. Chem. Soc. Faraday Trans. 1997, 93, 175–180. [Google Scholar] [CrossRef]
- Ma, L.; Geng, Y.; Chen, X.; Yan, N.; Li, J.; Schwank, J.W. Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts. Chem. Eng. J. 2020, 402, 125911. [Google Scholar] [CrossRef]
- Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A 2001, 212, 17–60. [Google Scholar] [CrossRef]
- Argyle, M.D.; Bartholomew, C.H. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts 2015, 5, 145–269. [Google Scholar] [CrossRef]
- Moulijn, J.A.; van Diepen, A.E.; Kapteijn, F. Catalyst deactivation: Is it predictable? What to do? Appl. Catal. A 2001, 212, 3–16. [Google Scholar] [CrossRef]
- He, B.J.-J.; Wang, C.-X.; Zheng, T.-T.; Zhao, Y.-K. Thermally Induced Deactivation and the Corresponding Strategies for Improving Durability in Automotive Three-Way Catalysts. Johnson Matthey Technol. Rev. 2016, 60, 196–203. [Google Scholar] [CrossRef]
- Yang, X.; Li, Q.; Lu, E.; Wang, Z.; Gong, X.; Yu, Z.; Guo, Y.; Wang, L.; Guo, Y.; Zhan, W.; et al. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat. Commun. 2019, 10, 1611. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, G.; Rochet, A.; Ogel, E.; Casapu, M.; Ritter, S.; Ogurreck, M.; Grunwaldt, J.-D. Aging of a Pt/Al2O3 exhaust gas catalyst monitored by quasi in situ X-ray micro computed tomography. RSC Adv. 2015, 5, 6893–6905. [Google Scholar] [CrossRef]
- Cao, A.; Lu, R.; Veser, G. Stabilizing metal nanoparticles for heterogeneous catalysis. Phys. Chem. Chem. Phys. 2010, 12, 13499–13510. [Google Scholar] [CrossRef]
- Andrievski, R.A. Review of thermal stability of nanomaterials. J. Mater. Sci. 2014, 49, 1449–1460. [Google Scholar] [CrossRef]
- Ren, Y.; Cheng, Y.; Gorte, R.J.; Huang, K. Toward Stabilizing Co3O4 Nanoparticles as an Oxygen Reduction. J. Electrochem. Soc. 2017, 164, F3001–F3007. [Google Scholar] [CrossRef]
- El-Shobaky, G.A.; Hewaidy, I.F.; Nabarawy, T. Sintering of non-stoichiometric NiO, CoO and Co3O4 catalysts. Surf. Technol. 1981, 12, 309–315. [Google Scholar] [CrossRef]
- Mocala, K.; Navrotsky, A.; Sherman, D.M. High-temperature heat capacity of Co3O4 spinel: Thermally induced spin unpairing transition. Phys. Chem. Miner. 1992, 19, 88–95. [Google Scholar] [CrossRef]
- Cardenas-Flechas, L.J.; Freire, P.T.C.; Paris, E.C.; Moreno, L.C.; Joya, M.R. Temperature-induced structural phase transformation in samples of Co3O4 and Co3−xNixO4 for CoO. Materialia 2021, 18, 101155. [Google Scholar] [CrossRef]
- Hansen, T.W.; Delariva, A.T.; Challa, S.R.; Datye, A.K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Veser, G. Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles. Nat. Mater. 2010, 9, 75–81. [Google Scholar] [CrossRef]
- Bechelany, M.; Maeder, X.; Riesterer, J.; Hankache, J.; Lerose, D.; Christiansen, S.; Michler, J.; Philippe, L. Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere. Cryst. Growth Des. 2010, 10, 587–596. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, X.; Yurchenko, O.; Diehle, P.; Altmann, F.; Wöllenstein, J.; Schmitt, K. Accelerated Deactivation of Mesoporous Co3O4-Supported Au–Pd Catalyst through Gas Sensor Operation. Chemosensors 2023, 11, 271. https://doi.org/10.3390/chemosensors11050271
Lyu X, Yurchenko O, Diehle P, Altmann F, Wöllenstein J, Schmitt K. Accelerated Deactivation of Mesoporous Co3O4-Supported Au–Pd Catalyst through Gas Sensor Operation. Chemosensors. 2023; 11(5):271. https://doi.org/10.3390/chemosensors11050271
Chicago/Turabian StyleLyu, Xuemeng, Olena Yurchenko, Patrick Diehle, Frank Altmann, Jürgen Wöllenstein, and Katrin Schmitt. 2023. "Accelerated Deactivation of Mesoporous Co3O4-Supported Au–Pd Catalyst through Gas Sensor Operation" Chemosensors 11, no. 5: 271. https://doi.org/10.3390/chemosensors11050271
APA StyleLyu, X., Yurchenko, O., Diehle, P., Altmann, F., Wöllenstein, J., & Schmitt, K. (2023). Accelerated Deactivation of Mesoporous Co3O4-Supported Au–Pd Catalyst through Gas Sensor Operation. Chemosensors, 11(5), 271. https://doi.org/10.3390/chemosensors11050271