Preparation of 2-Butanone Gas Sensor Based on Ag-Decorated In2O3 Nanocube with High Response and Low Detection Level
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Pure In2O3 Materials
2.3. Synthesis of Ag-Decorated In2O3 Materials
2.4. Characterization
2.5. Fabricating and Testing of Gas Sensors
3. Result and Discussion
3.1. Characterization of the Samples
3.2. Gas Sensing Characteristics
3.3. Sensing Mechanism of the Ag@In2O3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perfecto, T.M.; Zito, C.A.; Volanti, D.P. Effect of NiS nanosheets on the butanone sensing performance of ZnO hollow spheres under humidity conditions. Sens. Actuators B Chem. 2021, 334, 129684. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Liu, F.; Sun, X.; Guo, X.; Zhao, L.; Lu, G. 3-Aminopropyltriethoxysilane functionalized ZnO materials for improving the gas sensitivity to 2-butanone. Sens. Actuators B Chem. 2022, 363, 131845. [Google Scholar] [CrossRef]
- Song, B.-Y.; Li, C.; Zhang, X.-F.; Gao, R.; Cheng, X.-L.; Deng, Z.-P.; Xu, Y.-M.; Huo, L.-H.; Gao, S. A highly sensitive and selective nitric oxide/butanone temperature-dependent sensor based on waste biomass-derived mesoporous SnO2 hierarchical microtubes. J. Mater. Chem. A 2022, 10, 14411–14422. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, H.; Yuan, Z.; Meng, F. Conductometric butanone gas sensor based on Co3O4 modified SnO2 hollow spheres with ppb-level detection limit. Sens. Actuators B Chem. 2023, 374, 132787. [Google Scholar] [CrossRef]
- Weng, Y.; Zhang, L.; Zhu, W.; Lv, Y. One-step facile synthesis of coral-like Zn-doped SnO2 and its cataluminescence sensing of 2-butanone. J. Mater. Chem. A 2015, 3, 7132–7138. [Google Scholar] [CrossRef]
- Hamacher, T.; Niess, J.; Schulze Lammers, P.; Diekmann, B.; Boeker, P. Online measurement of odorous gases close to the odour threshold with a QMB sensor system with an integrated preconcentration unit. Sens. Actuators B Chem. 2003, 95, 39–45. [Google Scholar] [CrossRef]
- Rella, R.; Spadavecchia, J.; Ciccarella, G.; Siciliano, P.; Vasapollo, G.; Valli, L. Optochemical vapour detection using spin coated thin films of metal substituted phthalocyanines. Sens. Actuators B Chem. 2003, 89, 86–91. [Google Scholar] [CrossRef]
- Zhou, M.; Lee, J.; Zhu, H.; Nidetz, R.; Kurabayashi, K.; Fan, X. A fully automated portable gas chromatography system for sensitive and rapid quantification of volatile organic compounds in water. RSC Adv. 2016, 6, 49416–49424. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, G.; Liu, H.; Fu, H.; Fan, J.; Wang, K.; Chen, Y.; Li, B.; Zhang, C.; Zhi, X.; et al. Identification of volatile biomarkers of gastric cancer cells and ultrasensitive electrochemical detection based on sensing interface of Au-Ag alloy coated MWCNTs. Theranostics 2014, 4, 154–162. [Google Scholar] [CrossRef]
- Delgado-Rodríguez, M.; Ruiz-Montoya, M.; Giraldez, I.; López, R.; Madejón, E.; Díaz, M.J. Use of electronic nose and GC-MS in detection and monitoring some VOC. Atmos. Environ. 2012, 51, 278–285. [Google Scholar] [CrossRef]
- Zhang, R.K.; Wang, J.X.; Cao, H. High-Performance Cataluminescence Sensor Based on Nanosized V(2)O(5) for 2-Butanone Detection. Molecules 2020, 25, 3552. [Google Scholar] [CrossRef] [PubMed]
- Zito, C.A.; Perfecto, T.M.; Oliveira, T.N.T.; Volanti, D.P. Bicone-like ZnO structure as high-performance butanone sensor. Mater. Lett. 2018, 223, 142–145. [Google Scholar] [CrossRef]
- Oliveira, T.N.T.; Zito, C.A.; Perfecto, T.M.; Azevedo, G.M.; Volanti, D.P. ZnO twin-rods decorated with Pt nanoparticles for butanone detection. New J. Chem. 2020, 44, 15574–15583. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, M.; Shen, Z.; Wei, Q. A nanostructured Cr2O3/WO3 p–n junction sensor for highly sensitive detection of butanone. J. Mater. Sci. Mater. Electron. 2017, 28, 12056–12062. [Google Scholar] [CrossRef]
- Yang, H.; Liu, L.; Liang, H.; Wei, J.; Yang, Y. Phase-controlled synthesis of monodispersed porous In2O3 nanospheres via an organic acid-assisted hydrothermal process. CrystEngComm 2011, 13, 5011–5016. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Sun, G.-J.; Choi, S.; Lee, S.; Lee, C. Ethanol sensing properties of networked In2O3 nanorods decorated with Cr2O3-nanoparticles. Ceram. Int. 2015, 41, 9823–9827. [Google Scholar] [CrossRef]
- An, D.; Wang, Q.; Tong, X.; Lian, X.; Zou, Y.; Li, Y. ZnO-enhanced In2O3-based sensors for n-butanol gas. Ceram. Int. 2019, 45, 6869–6874. [Google Scholar] [CrossRef]
- Gao, L.; Cheng, Z.; Xiang, Q.; Zhang, Y.; Xu, J. Porous corundum-type In2O3 nanosheets: Synthesis and NO2 sensing properties. Sens. Actuators B Chem. 2015, 208, 436–443. [Google Scholar] [CrossRef]
- Ying, Z.; He, X.; Feng, C.; Li, L.; Wen, F.; Zheng, X.; Zheng, P.; Wang, G. Phenylalanine Dipeptide-Regulated Ag/In2O3 Nanocomposites for Enhanced NO2 Gas Sensing at Room Temperature with UV Illumination. ACS Appl. Nano Mater. 2021, 4, 13018–13026. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Wang, X.; Sun, G.; Cao, J.; Wang, Y. Improved TEA Sensitivity and Selectivity of In(2)O(3) Porous Nanospheres by Modification with Ag Nanoparticles. Nanomaterials 2022, 12, 1532. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Xiao, S.; Du, K. In2O3 microtubes decorated with Ag nanoparticles for NO2 gas detection at room temperature. Vacuum 2022, 202, 111197. [Google Scholar] [CrossRef]
- Ji, H.; Qin, W.; Yuan, Z.; Meng, F. Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas sensor with dynamic measurement and PCA weak separation. Sens. Actuators B Chem. 2021, 348, 130698. [Google Scholar] [CrossRef]
- Meng, F.; Shi, X.; Yuan, Z.; Ji, H.; Qin, W.; Shen, Y.; Xing, C. Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode. Sens. Actuators B Chem. 2021, 350, 130867. [Google Scholar] [CrossRef]
- Qin, W.; Yuan, Z.; Gao, H.; Zhang, R.; Meng, F. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sens. Actuators B Chem. 2021, 341, 130015. [Google Scholar] [CrossRef]
- Meng, F.; Wang, H.; Yuan, Z.; Zhang, R.; Li, J. Ppb-Level Triethylamine Gas Sensors Based on Palladium Nanoparticles Modified Flower-Like In2O3 Grown on rGO Nanosheets Operating at Low Temperature. IEEE Trans. Instrum. Meas. 2022, 71, 9507909. [Google Scholar] [CrossRef]
- Meng, F.; Qi, T.; Zhang, J.; Zhu, H.; Yuan, Z.; Liu, C.; Qin, W.; Ding, M. MoS2-Templated Porous Hollow MoO3 Microspheres for Highly Selective Ammonia Sensing via a Lewis Acid-Base Interaction. IEEE Trans. Ind. Electron. 2022, 69, 960–970. [Google Scholar] [CrossRef]
- Xing, R.; Xu, L.; Song, J. Preparation and gas sensing properties of In2O3/Au nanorods for detection of volatile organic compounds in exhaled breath. Sci. Rep. 2015, 5, 10717. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Theory of power laws for semiconductor gas sensors. Sens. Actuators B Chem. 2008, 128, 566–573. [Google Scholar] [CrossRef]
- Meng, F.; Li, X.; Yuan, Z.; Lei, Y.; Qi, T.; Li, J. Ppb-Level Xylene Gas Sensors Based on Co3O4 Nanoparticle-Coated Reduced Graphene Oxide (rGO) Nanosheets Operating at Low Temperature. IEEE Trans. Instrum. Meas. 2021, 70, 9511510. [Google Scholar] [CrossRef]
- Bai, S.; Chen, S.; Zhao, Y. Gas sensing properties of Cd-doped ZnO nanofibers synthesized by the electrospinning method. J. Mater. Chem. A 2014, 2, 16697–16706. [Google Scholar] [CrossRef]
- Weng, Y.-C.; Yang, Y.-H.; Lu, I.T. Detection of 2-Butanone for the Diagnosis of Helicobacter Pylori Using Graphene and ZnO Nanorod Electrodes. J. Nanosci. Nanotechnol. 2016, 16, 7077–7084. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Xu, M.; Shen, Z.; Wei, Q. A WO3 nanorod-Cr2O3 nanoparticle composite for selective gas sensing of 2-butanone. Chin. Chem. Lett. 2018, 29, 538–542. [Google Scholar] [CrossRef]
- Liu, X.; Qin, X.; Ji, H.; Wang, M. An enhanced butanone sensing performance of Er0.7Yb0.3FeO3 material with the proper electronic structure. J. Alloys Compd. 2019, 772, 263–271. [Google Scholar] [CrossRef]
- Vioto, G.C.N.; Perfecto, T.M.; Zito, C.A.; Volanti, D.P. Enhancement of 2-butanone sensing properties of SiO2@CoO core-shell structures. Ceram. Int. 2020, 46, 22692–22698. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Zhao, L.; Liu, F.; Sun, X.; Hu, X.; Lu, G. Preparation of Ce-doped SnO2 cuboids with enhanced 2-butanone sensing performance. Sens. Actuators B Chem. 2021, 341, 130039. [Google Scholar] [CrossRef]
- Sun, P.; Yu, Y.; Xu, J.; Sun, Y.; Ma, J.; Lu, G. One-step synthesis and gas sensing characteristics of hierarchical SnO2 nanorods modified by Pd loading. Sens. Actuators B Chem. 2011, 160, 244–250. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, Z.; Sun, B.; Jia, Y.; Li, M.; Liu, J. Highly sensitive and selective butanone sensors based on cerium-doped SnO2 thin films. Sens. Actuators B Chem. 2010, 145, 667–673. [Google Scholar] [CrossRef]
- Li, Z.; Yan, S.; Sun, M.; Li, H.; Wu, Z.; Wang, J.; Shen, W.; Fu, Y.Q. Significantly enhanced temperature-dependent selectivity for NO2 and H2S detection based on In2O3 nano-cubes prepared by CTAB assisted solvothermal process. J. Alloys Compd. 2019, 816, 152518. [Google Scholar] [CrossRef]
- Naberezhnyi, D.; Rumyantseva, M.; Filatova, D.; Batuk, M.; Hadermann, J.; Baranchikov, A.; Khmelevsky, N.; Aksenenko, A.; Konstantinova, E.; Gaskov, A. Effects of Ag Additive in Low Temperature CO Detection with In(2)O(3) Based Gas Sensors. Nanomaterials 2018, 8, 801. [Google Scholar] [CrossRef]
- Bai, J.; Kong, Y.; Liu, Z.; Yang, H.; Li, M.; Xu, D.; Zhang, Q. Ag modified Tb-doped double-phase In2O3 for ultrasensitive hydrogen gas sensor. Appl. Surf. Sci. 2022, 583, 152521. [Google Scholar] [CrossRef]
- Hu, J.; Sun, Y.; Xue, Y.; Zhang, M.; Li, P.; Lian, K.; Zhuiykov, S.; Zhang, W.; Chen, Y. Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sens. Actuators B Chem. 2018, 257, 124–135. [Google Scholar] [CrossRef]
- Mishra, R.K.; Murali, G.; Kim, T.-H.; Kim, J.H.; Lim, Y.J.; Kim, B.-S.; Sahay, P.P.; Lee, S.H. Nanocube In2O3@RGO heterostructure based gas sensor for acetone and formaldehyde detection. RSC Adv. 2017, 7, 38714–38724. [Google Scholar] [CrossRef]
Materials | Diffraction Planes (hkl) | Diffraction Angles (°) | FWHM (β) | Crystallize Size (nm) | Average Crystallize Size (nm) |
---|---|---|---|---|---|
In2O3 | (222) | 30.632 | 0.586 | 14.3 | 14.4 |
(440) | 51.044 | 0.627 | 14.2 | ||
(622) | 60.699 | 0.635 | 14.7 | ||
In-Ag-1 | (222) | 30.617 | 0.589 | 14.2 | 14.6 |
(440) | 51.067 | 0.615 | 14.5 | ||
(622) | 60.745 | 0.623 | 15.0 | ||
In-Ag2 | (222) | 30.629 | 0.555 | 15.1 | 15.7 |
(440) | 51.057 | 0.600 | 14.9 | ||
(622) | 60.727 | 0.552 | 17.0 | ||
In-Ag-3 | (222) | 30.626 | 0.550 | 15.2 | 15.5 |
(440) | 51.045 | 0.591 | 15.1 | ||
(622) | 60.704 | 0.575 | 16.3 |
Material | T. (°C) | Conc. (ppm) | Lim. (ppm) | τres/τrec (s) | Resp. | Ref. |
---|---|---|---|---|---|---|
bicone-like ZnO | 400 | 100 | 0.41 | -/- | 29.4 | [12] |
ZnO/Pt twin-rods | 450 | 100 | 5 | 8/- | 35.2 | [13] |
Cr2O3/WO3 nanosheets | 180 | 100 | 1 | 9/15 (5 ppm) | 40.51 | [14] |
ZnO/go | 200 | - | - | 2/40 | 9.49 (ΔR/Ro) | [31] |
WO3/Cr2O3 nanorods | 205 | 100 | 5 | 10/80 (5 ppm) | 5.6 | [32] |
Er0.7Yb0.3FeO3 | 170 | 10 | 0.5 | 35/83 | 12 | [33] |
SiO2@CoO | 350 | 100 | 5 | -/- | 44.7 | [34] |
Ce/SnO2 | 175 | 20 | 0.5 | 20/- | 23.9 | [35] |
Pd/SnO2 | 250 | 1000 | - | 1/35 (1000 ppm) | 451 | [36] |
Ce/SnO2 (film) | 210 | 100 | 10 | -/- | 181 | [37] |
Ag@In2O3 nanocube | 240 | 100 | 0.25 | 50/16 | 242 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Guo, Y.; Gao, H.; Meng, F. Preparation of 2-Butanone Gas Sensor Based on Ag-Decorated In2O3 Nanocube with High Response and Low Detection Level. Chemosensors 2023, 11, 288. https://doi.org/10.3390/chemosensors11050288
Zhang H, Guo Y, Gao H, Meng F. Preparation of 2-Butanone Gas Sensor Based on Ag-Decorated In2O3 Nanocube with High Response and Low Detection Level. Chemosensors. 2023; 11(5):288. https://doi.org/10.3390/chemosensors11050288
Chicago/Turabian StyleZhang, Hua, Yinghao Guo, Hongliang Gao, and Fanli Meng. 2023. "Preparation of 2-Butanone Gas Sensor Based on Ag-Decorated In2O3 Nanocube with High Response and Low Detection Level" Chemosensors 11, no. 5: 288. https://doi.org/10.3390/chemosensors11050288
APA StyleZhang, H., Guo, Y., Gao, H., & Meng, F. (2023). Preparation of 2-Butanone Gas Sensor Based on Ag-Decorated In2O3 Nanocube with High Response and Low Detection Level. Chemosensors, 11(5), 288. https://doi.org/10.3390/chemosensors11050288