Electrochemical Sensitivity Improvement by the Cooperation between Pt and Ru for Total Antioxidant Evaluation in Natural Extracts
Abstract
:1. Introduction
2. Experimental Section
2.1. Pretreatment of Vulcan XC-72 Carbon
2.2. Pt and Pt/Ru-Based Electrocatalysts Synthesis
2.3. Sample Preparation
2.4. Electrochemical Measurements
2.5. Physico-Chemical Characterizations
3. Results and Discussion
3.1. Physico-Chemical and Electrochemical Characterizations
3.2. Antioxidant Evaluation by DPV and EI
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative Stress and Antioxidants—A Critical Review on in vitro Antioxidant Assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.M.; Enache, T.A.; De Souza Gil, E.; Oliveira-Brett, A.M. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1680–1726. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 2, 457. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Flieger, W.; Baj, J. Antioxidants: Classification, Natural Sources, Activity/Capacity. Materials 2021, 14, 4135. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.C.; Fernandes, A.C.F.; Silva, M.S.; Schwan, R.F.; Dias, D.R. Antioxidant activities of tropical fruit wines. J. Inst. Brew. 2018, 124, 492–497. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- de Araújo Rodrigues, I.; Gomes, S.M.C.; Fernandes, I.P.G.; Oliveira-Brett, A.M. Phenolic Composition and Total Antioxidant Capacity by Electrochemical, Spectrophotometric and HPLC-EC Evaluation in Portuguese Red and White Wines. Electroanalysis 2019, 31, 936–945. [Google Scholar] [CrossRef]
- Pan, M.; Yang, J.; Liu, K.; Yin, Z.; Ma, T.; Liu, S.; Xu, L.; Wang, S. Noble metal nanostructured materials for chemical and biosensing systems. Nanomaterials 2020, 10, 209. [Google Scholar] [CrossRef]
- Jiang, K.; Zhang, J.; Chen, J. Enhanced catalytic activity of ternary Pd-Ni-Ir nanoparticles supported on carbon toward formic acid electro-oxidation. J. Solid State Electrochem. 2018, 22, 1941–1948. [Google Scholar] [CrossRef]
- Goh, A.; Roberts, D.; Wainright, J.; Bhadra, N.; Kilgore, K.; Bhadra, N.; Vrabec, T. Evaluation of Activated Carbon and Platinum Black as High-Capacitance Materials for Platinum Electrodes. Sensors 2022, 22, 4278. [Google Scholar] [CrossRef] [PubMed]
- Camara, G.A.; De Lima, R.B.; Iwasita, T. The influence of PtRu atomic composition on the yields of ethanol oxidation: A study by in situ FTIR spectroscopy. J. Electroanal. Chem. 2005, 585, 128–131. [Google Scholar] [CrossRef]
- Li, C.; Baek, J.B. Recent Advances in Noble Metal (Pt, Ru, and Ir)-Based Electrocatalysts for Efficient Hydrogen Evolution Reaction. ACS Omega 2020, 5, 31–40. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Yan, L.; Li, N.; Shi, J.; Jiang, C. Recent Developments in Detection Using Noble Metal Nanoparticles. Crit. Rev. Anal. Chem. 2020, 50, 97–110. [Google Scholar] [CrossRef]
- Xia, Y.F.; Guo, P.; Li, J.Z.; Zhao, L.; Sui, X.L.; Wang, Y.; Wang, Z.B. How to appropriately assess the oxygen reduction reaction activity of platinum group metal catalysts with rotating disk electrode. iScience 2021, 24, 103024. [Google Scholar] [CrossRef]
- França, M.C.; Ferreira, R.M.; Pereira, F.D.S.; e Silva, F.A.; Silva, A.C.A.; Cunha, L.C.S.; Júnior, J.D.J.G.V.; Neto, P.D.L.; Takana, A.A.; Rodrigues, T.S.; et al. Galvanic replacement managing direct methanol fuel cells: AgPt nanotubes as a strategy for methanol crossover effect tolerance. J. Mater. Sci. 2022, 57, 8225–8240. [Google Scholar] [CrossRef]
- Cardoso, Z.S.; Rodrigues, I.A.; Mendonça, C.J.S.; Rodrigues, J.R.P.; Ribeiro, W.R.A.; Silva, W.O.; Maciel, A.P. Evaluating the electrochemical characteristics of babassu coconut mesocarp ethanol produced to be used in fuel cells. J. Braz. Chem. Soc. 2018, 29, 1732–1741. [Google Scholar] [CrossRef]
- Issaad, F.Z.; Fernandes, I.P.G.; Enache, T.A.; Mouats, C.; Rodrigues, I.A.; Oliveira-Brett, A.M. Flavonoids in Selected Mediterranean Fruits: Extraction, Electrochemical Detection and Total Antioxidant Capacity Evaluation. Electroanalysis 2017, 29, 358–366. [Google Scholar] [CrossRef]
- Lima, C.C.; Fonseca, W.S.; Colmati, F.; Ribeiro, L.K.; França, M.C.; Longo, E.; Garcia, M.A.S.; Tanaka, A.A. Enhancing the methanol tolerance of ultrasmall platinum nanoparticles and manganese oxide onto carbon for direct methanol fuel cell: The importance of the synthesis procedure. Electrochim. Acta 2020, 363, 137256. [Google Scholar] [CrossRef]
- Macêdo, I.; Garcia, L.F.; Neto, J.O.; Leite, K.C.D.S.; Ferreira, V.S.; Ghedini, P.; Gil, E.D.S. Analytical Methods Electroanalytical tools for antioxidant evaluation of red fruits dry extracts. Food Chem. 2017, 217, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, D.; Kim, M. Development of an immuno-electrochemical glass carbon electrode sensor based on graphene oxide/gold nanocomposite and antibody for the detection of patulin. Food Chem. 2021, 342, 128257. [Google Scholar] [CrossRef] [PubMed]
- de Lima, S.L.S.; Pereira, F.S.; de Lima, R.B.; de Freitas, I.C.; Spadotto, J.; Connolly, B.J.; Barreto, J.; Stavale, F.; Vitorino, H.A.; Fajardo, H.V.; et al. MnO2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction. Nanomaterials 2022, 12, 3039. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, S.; Mohamedi, M. Synthesis of free-standing ternary Rh-Pt-SnO2-carbon nanotube nanostructures as a highly active and robust catalyst for ethanol oxidation. RSC Adv. 2020, 10, 45149–45158. [Google Scholar] [CrossRef] [PubMed]
- Tajik, S.; Beitollahi, H.; Shahsavari, S.; Nejad, F.G. Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode. Chemosphere 2022, 291, 132736. [Google Scholar] [CrossRef]
- Ruiz-Caro, P.; Espada-Bellido, E.; García-Guzmán, J.J.; Bellido-Milla, D.; Vázquez-González, M.; Cubillana-Aguilera, L.; Palacios-Santander, J.M. An electrochemical alternative for evaluating the antioxidant capacity in walnut kernel extracts. Food Chem. 2022, 393, 133417. [Google Scholar] [CrossRef]
- Major, G.H.; Fairley, N.; Sherwood, P.M.A. Practical guide for curve fitting in x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 2020, 38, 61203. [Google Scholar] [CrossRef]
Electrocatalysts | Nominal Ratio (%) | Atomic Ratio (%) | ||
---|---|---|---|---|
Pt80%Ru20%/C | 80 | 20 | 81 | 19 |
Pt60%Ru40%/C | 60 | 40 | 60 | 40 |
Electrodes | Active Electrochemical Area () |
---|---|
Pt/C | 22.60 |
Pt80Ru20/C | 21.43 |
Pt60Ru40/C | 41.42 |
Electrodes | Extracts | E (V) | IE (µA/V) | ||
---|---|---|---|---|---|
E1 | E2 | E3 | |||
Pt/C | pomegranate | 0.2 | 0.39 | 0.55 | 52.51 ± 6.00 |
hibiscus | 0.22 | 0.40 | - | 54.84 ± 8.37 | |
pitaya | 0.24 | - | - | 65.92 ± 7.52 | |
Pt80%Ru20%/C | pomegranate | 0.15 | 0.39 | 0.65 | 104.79 ± 6.89 |
hibiscus | 0.19 | 0.39 | 0.64 | 117.88 ± 9.78 | |
pitaya | 0.19 | 0.65 | - | 66.87 ± 4.52 | |
Pt60%Ru40%/C | pomegranate | 0.15 | 0.39 | 0.64 | 74.48 ± 5.94 |
hibiscus | 0.20 | 0.40 | 0.64 | 154.96 ± 5.34 | |
pitaya | 0.26 | 0.68 | - | 81.03 ± 7.05 |
Samples | Pt 4f7/2 | Pt 4f5/2 | Pt2+/Pt0 |
---|---|---|---|
Pt/C | 71.3 | 74.6 | 0.74 |
Pt60Ru40/C | 71.3 | 74.6 | 1.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diniz, G.C.; Pinheiro Gomes, V.T.R.; de Assis, M.; Alejandro Figueroa, S.J.; Ferreira Torquato, I.; de Freitas Borges, L.G.; Aguilar Vitorino, H.; de Lima, R.B.; Suller Garcia, M.A.; de Araujo Rodrigues, I. Electrochemical Sensitivity Improvement by the Cooperation between Pt and Ru for Total Antioxidant Evaluation in Natural Extracts. Chemosensors 2023, 11, 314. https://doi.org/10.3390/chemosensors11060314
Diniz GC, Pinheiro Gomes VTR, de Assis M, Alejandro Figueroa SJ, Ferreira Torquato I, de Freitas Borges LG, Aguilar Vitorino H, de Lima RB, Suller Garcia MA, de Araujo Rodrigues I. Electrochemical Sensitivity Improvement by the Cooperation between Pt and Ru for Total Antioxidant Evaluation in Natural Extracts. Chemosensors. 2023; 11(6):314. https://doi.org/10.3390/chemosensors11060314
Chicago/Turabian StyleDiniz, Gustavo Carvalho, Vinicius Tribuzi Rodrigues Pinheiro Gomes, Marcelo de Assis, Santiago José Alejandro Figueroa, Igor Ferreira Torquato, Luiz Gustavo de Freitas Borges, Hector Aguilar Vitorino, Roberto Batista de Lima, Marco Aurélio Suller Garcia, and Isaíde de Araujo Rodrigues. 2023. "Electrochemical Sensitivity Improvement by the Cooperation between Pt and Ru for Total Antioxidant Evaluation in Natural Extracts" Chemosensors 11, no. 6: 314. https://doi.org/10.3390/chemosensors11060314
APA StyleDiniz, G. C., Pinheiro Gomes, V. T. R., de Assis, M., Alejandro Figueroa, S. J., Ferreira Torquato, I., de Freitas Borges, L. G., Aguilar Vitorino, H., de Lima, R. B., Suller Garcia, M. A., & de Araujo Rodrigues, I. (2023). Electrochemical Sensitivity Improvement by the Cooperation between Pt and Ru for Total Antioxidant Evaluation in Natural Extracts. Chemosensors, 11(6), 314. https://doi.org/10.3390/chemosensors11060314