Enhancing Polyantimonic-Based Materials’ Moisture Response with Binder Content Tuning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystalline PAA Powder Preparation
2.2. Binder Preparation
2.3. Solid Electrolyte Preparation
2.4. Structure Characterization of Samples
2.5. Electrical Response Measurements
3. Results and Discussion
3.1. Morphological and Structural Analysis
3.2. Electrical Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Lu, C. Humidity Sensors: A Review of Materials and Mechanisms. Sens. Lett. 2005, 3, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, E.S.; Leão, V.N.S.; Monteiro, S.R.; Guimarães, R.P.; Barbosa, A.F.R.; Nascimento, M.M. Preparation of Ceramic Humidity Sensors by Electrospinning and Sintering: A Promising Alternative. Res. Dev. Mater. Sci. 2018, 6, 629–631. [Google Scholar] [CrossRef]
- Morais, R.M.; dos Santos Klem, M.; Nogueira, G.L.; Gomes, T.C.; Alves, N. Low Cost Humidity Sensor Based on PANI/PEDOT:PSS Printed on Paper. IEEE Sens. J. 2018, 18, 2647–2651. [Google Scholar] [CrossRef] [Green Version]
- Tulliani, J.-M.; Inserra, B.; Ziegler, D. Carbon-Based Materials for Humidity Sensing: A Short Review. Micromachines 2019, 10, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGhee, J.R.; Sagu, J.S.; Southee, D.J.; Evans, P.S.A.; Wijayantha, K.G.U. Printed, Fully Metal Oxide, Capacitive Humidity Sensors Using Conductive Indium Tin Oxide Inks. ACS Appl. Electron. Mater. 2020, 2, 3593–3600. [Google Scholar] [CrossRef]
- Zhu, Z.; Lin, W.-D.; Lin, Z.-Y.; Chuang, M.-H.; Wu, R.-J.; Chavali, M. Conductive Polymer (Graphene/PPy)–BiPO4 Composite Applications in Humidity Sensors. Polymers 2021, 13, 2013. [Google Scholar] [CrossRef]
- Haq, Y.U.; Ullah, R.; Mazhar, S.; Khattak, R.; Qarni, A.A.; Haq, Z.U.; Amin, S. Synthesis and Characterization of 2D MXene: Device Fabrication for Humidity Sensing. J. Sci. Adv. Mater. Devices 2022, 7, 100390. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Xu, Y.; Shen, M.; Duan, C.; Dai, L.; Ni, Y. Green and Sustainable Cellulose-Derived Humidity Sensors: A Review. Carbohydr. Polym. 2021, 270, 118385. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Zhao, Q.; Wang, S.; Huang, Q.; Yuan, Z.; Zhang, Y.; Jiang, Y.; Tai, H. Halloysite Nanotubes: Natural, Environmental-Friendly and Low-Cost Nanomaterials for High-Performance Humidity Sensor. Sens. Actuators B Chem. 2020, 317, 128204. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, Q.; Wang, S.; Yuan, Z.; Zhang, Y.; Li, X.; Wu, Y.; Jiang, Y.; Tai, H. Novel Application of Attapulgite on High Performance and Low-Cost Humidity Sensors. Sens. Actuators B Chem. 2020, 305, 127534. [Google Scholar] [CrossRef]
- Duan, Z.; Jiang, Y.; Zhao, Q.; Wang, S.; Yuan, Z.; Zhang, Y.; Liu, B.; Tai, H. Facile and Low-Cost Fabrication of a Humidity Sensor Using Naturally Available Sepiolite Nanofibers. Nanotechnology 2020, 31, 355501. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, M.A.; Ahmad, Z.; Shakoor, R.A. Organic Thin-Film Capacitive and Resistive Humidity Sensors: A Focus Review. Adv. Mater. Interfaces 2018, 5, 1800969. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, J.E.; Kim, Y.H.; Kim, J.J.; Shim, Y.-S.; Kim, S.Y.; Lee, M.H.; Jang, H.W. Room Temperature Humidity Sensors Based on RGO/MoS2 Hybrid Composites Synthesized by Hydrothermal Method. Sens. Actuators B Chem. 2018, 258, 775–782. [Google Scholar] [CrossRef]
- Faia, P.M.; Libardi, J.; Louro, C.S. Effect of V2O5 Doping on P- to n-Conduction Type Transition of TiO2:WO3 Composite Humidity Sensors. Sens. Actuators B Chem. 2016, 222, 952–964. [Google Scholar] [CrossRef]
- De Grotthuss, C.J.T. Sur La Décomposition de l’eau et Des Corps Qu’elle Tient En Dissolution à l’aide de l’électricité Galvanique. Ann. Chim. 1806, 58, 54–74. [Google Scholar]
- England, W.; Cross, M.; Hamnett, A.; Wiseman, P.; Goodenough, J. Fast Proton Conduction in Inorganic Ion-Exchange Compounds. Solid State Ion. 1980, 1, 231–249. [Google Scholar] [CrossRef]
- Delacroix, M.A.E. Acides Antimoniques et Antimoniates. Bull. Soc. Chim. Fr. 1899, 21, 1049–1054. [Google Scholar]
- Senderens, M.J.B. Sur Un Nouvel Acide Antimonique Soluble et Ses Antimoniates. Bull. Soc. Chim. Fr. 1899, 21, 47–58. [Google Scholar]
- Abe, M.; Ito, T. Synthetic Inorganic Ion-Exchange Materials. X. Preparation and Properties of So-Called Antimonic(V) Acid. Bull. Chem. Soc. Jpn. 1968, 41, 333–342. [Google Scholar] [CrossRef]
- Mayer, S.F.; Rodrigues, J.E.; Sobrados, I.; Gainza, J.; Fernández-Díaz, M.T.; Marini, C.; Asensio, M.C.; Alonso, J.A. Synergy of Diffraction and Spectroscopic Techniques to Unveil the Crystal Structure of Antimonic Acid. Sci. Rep. 2021, 11, 17763. [Google Scholar] [CrossRef] [PubMed]
- Kosohin, O.; Matvieiev, O.; Linyucheva, O. Hydrated Antimonic Acid as a Solid Electrolyte. Mater. Today Proc. 2022, 50, 521–523. [Google Scholar] [CrossRef]
- Tourky, A.R.; Mousa, A.A. 150. Studies on Some Metal Electrodes. Part V. The Amphoteric Properties of Antimony Tri- and Pent-Oxide. J. Chem. Soc. 1948, 0, 759–763. [Google Scholar] [CrossRef]
- Ostrovskii, D.; Valakh, M.; Karasiova, T.; Yaremko, A. The Peculiarities of Hydrogen Bonds in Raman Spectra of Solid Superionic Polyantimonic Acids. Ferroelectrics 1997, 192, 93–99. [Google Scholar] [CrossRef]
- Baetsle, L.H.; Huys, D. Structure and Ion-Exchange Characteristics of Polyantimonic Acid. J. Inorg. Nucl. Chem. 1968, 30, 639–649. [Google Scholar] [CrossRef]
- Burmistrov, V.A.; Kovalenko, L.Y.; Firsova, O.A.; Filonenko, E.M.; Lupitskaya, Y.A. Ion Transport in Hydrated Compounds Based on Crystalline Polyantimonic Acid. Butlerov Commun. 2020, 62, 80–84. [Google Scholar] [CrossRef]
- Jander, G.; Simon, A. Zur Kenntnis Der Antimonpentoxydhydrate. Z. Anorg. Allg. Chem. 1923, 127, 68–82. [Google Scholar] [CrossRef]
- Pauling, L. The Formulas of Antimonic Acid and the Antimonates. J. Am. Chem. Soc. 1933, 55, 1895–1900. [Google Scholar] [CrossRef]
- Belinskaya, F.A.; Militsina, E.A. Inorganic Ion-Exchange Materials Based on Insoluble Antimony(V) Compounds. Russ. Chem. Rev. 1980, 49, 933–952. [Google Scholar] [CrossRef]
- Leysen, R.; Vandenborre, H. Synthesis and Characterization of Polyantimonic Acid Membranes. Mater. Res. Bull. 1980, 15, 437–450. [Google Scholar] [CrossRef]
- Yaroshenko, F.A.; Burmistrov, V.A. Dielectric Relaxation and Protonic Conductivity of Polyantimonic Crystalline Acid at Low Temperatures. Russ. J. Electrochem. 2015, 51, 391–396. [Google Scholar] [CrossRef]
- Yaroshenko, F.A.; Burmistrov, V.A. Dielectric Losses and Proton Conductivity of Polyantimonic Acid Membranes. Russ. J. Electrochem. 2016, 52, 690–693. [Google Scholar] [CrossRef]
- Yaroshenko, F.A.; Burmistrov, V.A. Synthesis of Hybrid Materials Based on MF-4SK Perfluorinated Sulfonated Cation-Exchange Membranes Modified with Polyantimonic Acid and Characterization of Their Proton Conductivity. Pet. Chem. 2018, 58, 770–773. [Google Scholar] [CrossRef]
- Lan, Z.; Ji-Ying, W.; Xuan, Z.; Fu-Zhi, L.; Feng, J. Preparation, Characterization and Sr(II) Adsorption Performance of Self-Doped Antimony Oxide. Acta Phys. Chim. Sin. 2014, 30, 1923–1931. [Google Scholar] [CrossRef]
- Lefebvre, J. L’acide Antimonique Échangeur d’ions. Mise En Évidence et Nature Des Échanges. C R. Hebd. Seances Acad. Sci. 1965, 260, 5575–5578. [Google Scholar]
- Kurapova, O.Y.; Faia, P.M.; Zaripov, A.A.; Pazheltsev, V.V.; Glukharev, A.A.; Konakov, V.G. Electrochemical Characterization of Novel Polyantimonic-Acid-Based Proton Conductors for Low- and Intermediate-Temperature Fuel Cells. Appl. Sci. 2021, 11, 11877. [Google Scholar] [CrossRef]
- Amarilla, J. Antimonic Acid and Sulfonated Polystyrene Proton-Conducting Polymeric Composites. Solid. State Ion. 2000, 127, 133–139. [Google Scholar] [CrossRef]
- Leysen, R.; Doyen, W.; Proost, R.; Vermeiren, P.; Adriansens, W.; Deknock, R. The Use of Heterogeneous Membranes in Electrochemical Systems. In Synthetic Polymeric Membranes; Sedláček, B., Kahovec, J., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 1987; pp. 89–100. [Google Scholar]
- Vandenborre, H.; Leysen, R.; Baetslé, L. Alkaline Inorganic-Membrane-Electrolyte (IME) Water Electrolysis. Int. J. Hydrogen Energy 1980, 5, 165–171. [Google Scholar] [CrossRef]
- Mendes, S.; Kurapova, O.; Faia, P.; Pazheltsev, V.; Zaripov, A.; Konakov, V. Polyantimonic Acid-Based Materials Evaluated as Moisture Sensors at Ambient Temperature. J. Solid State Electrochem. 2023, 27, 611–625. [Google Scholar] [CrossRef]
- Mohseni Kiasari, N.; Soltanian, S.; Gholamkhass, B.; Servati, P. Room Temperature Ultra-Sensitive Resistive Humidity Sensor Based on Single Zinc Oxide Nanowire. Sens. Actuators A Phys. 2012, 182, 101–105. [Google Scholar] [CrossRef]
- Chang, S.-P.; Chang, S.-J.; Lu, C.-Y.; Li, M.-J.; Hsu, C.-L.; Chiou, Y.-Z.; Hsueh, T.-J.; Chen, I.-C. A ZnO Nanowire-Based Humidity Sensor. Superlattices Microstruct. 2010, 47, 772–778. [Google Scholar] [CrossRef]
- Li, F.; Li, P.; Zhang, H. Preparation and Research of a High-Performance ZnO/SnO2 Humidity Sensor. Sensors 2021, 22, 293. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pei, Y.; Jiang, Z.; Shi, Z.; Xu, J.; Wu, D.; Xu, T.; Tian, Y.; Wang, X.; Li, X. Humidity Sensing Properties of the Hydrothermally Synthesized WS2-Modified SnO2 Hybrid Nanocomposite. Appl. Surf. Sci. 2018, 447, 325–330. [Google Scholar] [CrossRef]
- Kovalenko, L.Y.; Yaroshenko, F.A.; Burmistrov, V.A.; Isaeva, T.N.; Galimov, D.M. Thermolysis of Hydrated Antimony Pentoxide. Inorg. Mater. 2019, 55, 586–592. [Google Scholar] [CrossRef]
- Kovalenko, L.Y.; Burmistrov, V.A.; Zakhar’evich, D.A.; Kalganov, D.A. On the Mechanism of Proton Conductivity of Polyantimonic Acid. Chelyabinsk Phys. Math. J. 2021, 6, 95–110. [Google Scholar] [CrossRef]
- Shabana, E.I.; El-Dessouky, M.I.; Abed El-Aziz, M.M. The Ion Exchange Characteristics of Antimonic Acid. J. Radioanal. Nucl. Chem. 2002, 251, 293–296. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, H.; Cao, H.; Zheng, G. Understanding the Enhanced Removal of Bi(III) Using Modified Crystalline Antimonic Acids: Creation of a Transitional Pyrochlore-Type Structure and the Sb(V)-Bi(III) Interaction Behaviors. Chem. Eng. J. 2019, 360, 313–324. [Google Scholar] [CrossRef]
- Yu, T.; Shen, Y.; Zhang, H.; Xu, S.; Cao, H.; Zheng, G. Efficient Removal of Bismuth with Supersoluble Amorphous Antimony Acids: An Insight into Synthesis Mechanism and Sb(V)-Bi(III) Interaction Behaviors. Chem. Eng. J. 2021, 420, 127617. [Google Scholar] [CrossRef]
- Wang, B.; Deng, Z.; Xia, Y.; Hu, J.; Li, H.; Wu, H.; Zhang, Q.; Zhang, Y.; Liu, H.; Dou, S. Realizing Reversible Conversion-Alloying of Sb(V) in Polyantimonic Acid for Fast and Durable Lithium- and Potassium-Ion Storage. Adv. Energy Mater. 2020, 10, 1903119. [Google Scholar] [CrossRef]
- Bauerle, J.E. Study of Solid Electrolyte Polarization by a Complex Admittance Method. J. Phys. Chem. Solids 1969, 30, 2657–2670. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications, 3rd ed.; Barsoukov, E., Macdonald, J.R., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 9781119381860. [Google Scholar]
- Wang, Z.; Shi, L.; Wu, F.; Yuan, S.; Zhao, Y.; Zhang, M. The Sol–Gel Template Synthesis of Porous TiO2 for a High Performance Humidity Sensor. Nanotechnology 2011, 22, 275502. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Feng, N.; Li, J.; Zhang, J.; Li, W. Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film. Sens. Actuators B Chem. 2020, 283, 786–792. [Google Scholar] [CrossRef]
RH (%) | R (Ω) | C (F) | QCPE1 (S) | nCPE1 (a.u.) | QCPE2 (S) | nCPE2 (a.u.) | Cgeo (F) | Wcoeffi. (Ω × s−1/2) |
---|---|---|---|---|---|---|---|---|
0 | 2.77 × 104 | 9.11 × 10−9 | 4.50 × 10−9 | 8.29 × 10−1 | 2.85 × 10−6 | 1.19 × 10−1 | 3.26 × 10−12 | 8.31 × 10−12 |
10 | 3.66 × 104 | 6.73 × 10−9 | 3.81 × 10−9 | 8.47 × 10−1 | 2.30 × 10−6 | 1.23 × 10−1 | 3.26 × 10−12 | 3.24 × 10−12 |
20 | 4.07 × 104 | 6.27 × 10−9 | 3.69 × 10−9 | 8.50 × 10−1 | 2.15 × 10−6 | 1.22 × 10−1 | 3.26 × 10−12 | 9.41 × 10−12 |
30 | 1.32 × 104 | 4.15 × 10−11 | 6.10 × 10−9 | 7.72 × 10−1 | 3.40 × 10−6 | 9.98 × 10−2 | 3.07 × 10−12 | 2.74 × 10−11 |
40 | 9.30 × 102 | 4.86 × 10−11 | 6.23 × 10−9 | 7.79 × 10−1 | 3.43 × 10−6 | 9.64 × 10−2 | 3.28 × 10−12 | 2.72 × 10−12 |
50 | 4.95 × 102 | 2.58 × 10−11 | 6.59 × 10−9 | 7.80 × 10−1 | 3.87 × 10−6 | 9.53 × 10−2 | 3.28 × 10−12 | 2.91 × 10−12 |
60 | 6.51 × 103 | 5.17 × 10−11 | 7.51 × 10−9 | 7.71 × 10−1 | 5.12 × 10−6 | 9.42 × 10−2 | 3.05 × 10−12 | 20.0 × 10−12 |
70 | 4.99 × 103 | 6.33 × 10−11 | 8.62 × 10−9 | 7.66 × 10−1 | 6.53 × 10−6 | 8.92 × 10−2 | 3.08 × 10−12 | 39.5 × 10−12 |
80 | 2.81 × 103 | 9.04 × 10−11 | 1.03 × 10−8 | 7.58 × 10−1 | 7.80 × 10−6 | 8.87 × 10−2 | 3.09 × 10−12 | 42.2 × 10−12 |
90 | 1.21 × 103 | 3.26 × 10−12 | 1.19 × 10−8 | 7.49 × 10−1 | 1.00 × 10−5 | 8.19 × 10−2 | 3.29 × 10−12 | 59.7 × 10−12 |
100 | 1.03 × 102 | 1.28 × 10−12 | 1.42 × 10−8 | 7.44 × 10−1 | 1.32 × 10−5 | 7.07 × 10−2 | 3.38 × 10−12 | 86.6 × 10−12 |
RH (%) | R (Ω) | C (F) | QCPE1 (S) | nCPE1 (a.u.) | QCPE2 (S) | nCPE2 (a.u.) | Cgeo (F) | Wcoeffi. (Ω × s−1/2) |
---|---|---|---|---|---|---|---|---|
0 | 1.69 × 104 | 1.81 × 10−8 | 2.46 × 10−8 | 7.86 × 10−1 | 3.15 × 10−5 | 4.63 × 10−2 | 3.69 × 10−12 | 1.83 × 10−12 |
10 | 2.01 × 104 | 1.60 × 10−8 | 1.87 × 10−8 | 8.09 × 10−1 | 2.40 × 10−5 | 4.96 × 10−2 | 3.66 × 10−12 | 7.23 × 10−12 |
20 | 2.19 × 104 | 1.50 × 10−8 | 1.64 × 10−8 | 8.21 × 10−1 | 2.09 × 10−5 | 5.09 × 10−2 | 3.66 × 10−12 | 2.23 × 10−12 |
30 | 2.15 × 104 | 1.51 × 10−8 | 1.60 × 10−8 | 8.23 × 10−1 | 2.06 × 10−5 | 5.05 × 10−2 | 3.66 × 10−12 | 1.74 × 10−12 |
40 | 1.98 × 104 | 1.61 × 10−8 | 1.70 × 10−8 | 8.18 × 10−1 | 2.22 × 10−5 | 4.91 × 10−2 | 3.65 × 10−12 | 2.42 × 10−12 |
50 | 1.86 × 104 | 1.70 × 10−8 | 1.84 × 10−8 | 8.11 × 10−1 | 2.41 × 10−5 | 4.79 × 10−2 | 3.65 × 10−12 | 1.01 × 10−12 |
60 | 1.66 × 104 | 1.83 × 10−8 | 2.09 × 10−8 | 8.01 × 10−1 | 2.81 × 10−5 | 4.62 × 10−2 | 3.66 × 10−12 | 1.63 × 10−12 |
70 | 1.39 × 104 | 2.07 × 10−8 | 2.52 × 10−8 | 7.85 × 10−1 | 3.46 × 10−5 | 4.34 × 10−2 | 3.69 × 10−12 | 1.85 × 10−12 |
80 | 1.13 × 104 | 2.29 × 10−8 | 3.09 × 10−8 | 7.71 × 10−1 | 4.51 × 10−5 | 4.03 × 10−2 | 4.00 × 10−12 | 4.32 × 10−12 |
90 | 9.34 × 103 | 2.59 × 10−8 | 3.74 × 10−8 | 7.57 × 10−1 | 5.52 × 10−5 | 3.69 × 10−2 | 4.05 × 10−12 | 3.05 × 10−12 |
100 | 7.41 × 103 | 2.88 × 10−8 | 4.17 × 10−8 | 7.50 × 10−1 | 7.03 × 10−5 | 3.24 × 10−2 | 4.18 × 10−12 | 1.24 × 10−12 |
RH (%) | R (Ω) | C (F) | QCPE1 (S) | nCPE1 (a.u.) | QCPE2 (S) | nCPE2 (a.u.) | Cgeo (F) | Wcoeffi. (Ω × s−1/2) |
---|---|---|---|---|---|---|---|---|
0 | 6.58 × 103 | 1.37 × 10−10 | 2.15 × 10−8 | 8.09 × 10−1 | 9.36 × 10−6 | 6.50 × 10−2 | 3.35 × 10−12 | 1.86 × 10−11 |
10 | 7.93 × 103 | 1.30 × 10−10 | 1.82 × 10−8 | 8.23 × 10−1 | 7.14 × 10−6 | 6.98 × 10−2 | 3.36 × 10−12 | 1.33 × 10−11 |
20 | 9.10 × 103 | 1.12 × 10−10 | 1.66 × 10−8 | 8.32 × 10−1 | 6.24 × 10−6 | 7.31 × 10−2 | 3.50 × 10−12 | 1.80 × 10−11 |
30 | 9.05 × 103 | 1.08 × 10−10 | 1.63 × 10−8 | 8.37 × 10−1 | 5.98 × 10−6 | 7.41 × 10−2 | 3.49 × 10−12 | 4.13 × 10−11 |
40 | 7.89 × 103 | 1.24 × 10−10 | 1.88 × 10−8 | 8.28 × 10−1 | 6.79 × 10−6 | 6.98 × 10−2 | 3.49 × 10−12 | 8.16 × 10−11 |
50 | 6.91 × 103 | 1.35 × 10−10 | 2.10 × 10−8 | 8.19 × 10−1 | 7.83 × 10−6 | 6.71 × 10−2 | 3.48 × 10−12 | 9.45 × 10−11 |
60 | 5.97 × 103 | 1.40 × 10−10 | 2.41 × 10−8 | 8.09 × 10−1 | 9.34 × 10−6 | 6.37 × 10−2 | 3.50 × 10−12 | 3.28 × 10−11 |
70 | 5.03 × 103 | 1.45 × 10−10 | 2.98 × 10−8 | 7.92 × 10−1 | 1.26 × 10−5 | 5.65 × 10−2 | 3.52 × 10−12 | 8.04 × 10−11 |
80 | 4.22 × 103 | 1.44 × 10−10 | 3.89 × 10−8 | 7.71 × 10−1 | 1.89 × 10−5 | 4.50 × 10−2 | 3.56 × 10−12 | 2.98 × 10−11 |
90 | 3.57 × 103 | 1.27 × 10−10 | 4.93 × 10−8 | 7.54 × 10−1 | 2.78 × 10−5 | 3.42 × 10−2 | 3.59 × 10−12 | 2.74 × 10−11 |
100 | 2.67 × 103 | 1.23 × 10−10 | 5.81 × 10−8 | 7.45 × 10−1 | 3.91 × 10−5 | 2.74 × 10−2 | 3.66 × 10−12 | 4.80 × 10−11 |
Material Type | Resistance (Ohms) | RH Value (%) | Impedance (Ohms) | Hysteresis | Reference |
---|---|---|---|---|---|
Sb2O5·3H2O | 8 × 104 | 10 | 1.4 × 105 (400 Hz) | low (<6.8%) | Present work |
3 × 104 | 90 | 8 × 104 (400 Hz) | |||
Sb2O5·3H2O | 3 × 105 | 10 | 7.3 × 105 (400 Hz) | no | [40] |
1 × 105 | 90 | 3.5 × 105 (400 Hz) | |||
3.2 × 105 | 90 | ||||
ZnO/SnO2 | - | 25 | 107 | yes | [43] |
90 | 104 | ||||
WS2-modified SnO2 | 195 | 30 | - | no data | [44] |
225 | 90 | ||||
Porous TiO2 | - | 10 | 5 × 105–108 | no | [53] |
90 | 104 | ||||
Halloysite nanotubes | - | 0 | 300 | ~5% | [10] |
91.5 | 5 × 105 | ||||
Silica nanoparticles | - | 40 | 107 | <6% | [9] |
90 | 8 × 109 | ||||
CS/ZnO/SWCNT composite | 1.2 × 103 | 11 | - | ~10% | [54] |
3 × 103 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, S.; Kurapova, O.; Faia, P. Enhancing Polyantimonic-Based Materials’ Moisture Response with Binder Content Tuning. Chemosensors 2023, 11, 423. https://doi.org/10.3390/chemosensors11080423
Mendes S, Kurapova O, Faia P. Enhancing Polyantimonic-Based Materials’ Moisture Response with Binder Content Tuning. Chemosensors. 2023; 11(8):423. https://doi.org/10.3390/chemosensors11080423
Chicago/Turabian StyleMendes, Sofia, Olga Kurapova, and Pedro Faia. 2023. "Enhancing Polyantimonic-Based Materials’ Moisture Response with Binder Content Tuning" Chemosensors 11, no. 8: 423. https://doi.org/10.3390/chemosensors11080423
APA StyleMendes, S., Kurapova, O., & Faia, P. (2023). Enhancing Polyantimonic-Based Materials’ Moisture Response with Binder Content Tuning. Chemosensors, 11(8), 423. https://doi.org/10.3390/chemosensors11080423