An Upgraded Protocol for the Silanisation of the Solid Phase for the Synthesis of Molecularly Imprinted Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glass Beads Activation
2.2. Glass Beads Silanisation
2.3. Glass Beads Washes Simulation and Amino Groups Quantification
2.4. Iron Oxide Nanoparticles Silanisation
2.5. Iron Oxide Nanoparticles Aminogroups Quantification
3. Results
3.1. Silanes Stability on Glass Beads
3.1.1. Amino Silanes Investigation
3.1.2. Dipodal Silane in Stability Study
3.2. Silane Stability on Iron Oxide Nanoparticles (IO-NPs)
3.2.1. Silane Investigation
3.2.2. Stability over Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Umpleby Ii, R.J.; Bode, M.; Shimizu, K.D. Measurement of the continuous distribution of binding sites in molecularly imprinted polymers. Analyst 2000, 125, 1261–1265. [Google Scholar] [CrossRef]
- Pérez, N.; Whitcombe, M.J.; Vulfson, E.N. Molecularly imprinted nanoparticles prepared by core-shell emulsion polymerization. J. Appl. Polym. Sci. 2000, 77, 1851–1859. [Google Scholar] [CrossRef]
- Vaihinger, D.; Landfester, K.; Kräuter, I.; Brunner, H.; Tovar, G.E.M. Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation. Macromol. Chem. Phys. 2002, 203, 1965–1973. [Google Scholar] [CrossRef]
- Ye, L.; Weiss, R.; Mosbach, K. Synthesis and Characterization of Molecularly Imprinted Microspheres. Macromolecules 2000, 33, 8239–8245. [Google Scholar] [CrossRef]
- Hoshino, Y.; Koide, H.; Urakami, T.; Kanazawa, H.; Kodama, T.; Oku, N.; Shea, K.J. Recognition, Neutralization, and Clearance of Target Peptides in the Bloodstream of Living Mice by Molecularly Imprinted Polymer Nanoparticles: A Plastic Antibody. J. Am. Chem. Soc. 2010, 132, 6644–6645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimatsu, K.; Koide, H.; Hoshino, Y.; Shea, K.J. Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin. Nat. Protoc. 2015, 10, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Poma, A.; Guerreiro, A.; Whitcombe, M.J.; Piletska, E.V.; Turner, A.P.F.; Piletsky, S.A. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template—“Plastic Antibodies”. Adv. Funct. Mater. 2013, 23, 2821–2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 2016, 11, 443. [Google Scholar] [CrossRef]
- Ambrosini, S.; Beyazit, S.; Haupt, K.; Tse Sum Bui, B. Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition. Chem. Commun. 2013, 49, 6746–6748. [Google Scholar] [CrossRef]
- Xu, J.; Ambrosini, S.; Tamahkar, E.; Rossi, C.; Haupt, K.; Tse Sum Bui, B. Toward a Universal Method for Preparing Molecularly Imprinted Polymer Nanoparticles with Antibody-like Affinity for Proteins. Biomacromolecules 2016, 17, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Medina Rangel, P.X.; Laclef, S.; Xu, J.; Panagiotopoulou, M.; Kovensky, J.; Tse Sum Bui, B.; Haupt, K. Solid-phase synthesis of molecularly imprinted polymer nanolabels: Affinity tools for cellular bioimaging of glycans. Sci. Rep. 2019, 9, 3923. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, R.; Rouhi, M.; Shinde, S.; Bedwell, T.; Incel, A.; Mavliutova, L.; Piletsky, S.; Nicholls, I.A.; Sellergren, B. Highly Efficient Synthesis and Assay of Protein-Imprinted Nanogels by Using Magnetic Templates. Angew. Chem. Int. Ed. Engl. 2019, 58, 727–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermanson, G.T. Bioconjugate Techniques, 3rd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Zhu, M.; Lerum, M.Z.; Chen, W. How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica. Langmuir 2012, 28, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinker, C.J. Hydrolysis and Condensation of Silicates: Effects on Structure. J. Non-Cryst. Solids 1988, 100, 31–51. [Google Scholar] [CrossRef] [Green Version]
- Piletsky, S.S.; Garcia Cruz, A.; Piletska, E.; Piletsky, S.A.; Aboagye, E.O.; Spivey, A.C. Iodo Silanes as Superior Substrates for the Solid Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles. Polymers 2022, 14, 1595. [Google Scholar] [CrossRef]
- Grillo, F. Development of a novel assay for drugs of abuse based on Molecularly Imprinted Polymers as Synthetic Antibodies. Master’s Thesis, University of Leicester Library, Leicester, UK, 2018. [Google Scholar]
- Asenath Smith, E.; Chen, W. How to Prevent the Loss of Surface Functionality Derived from Aminosilanes. Langmuir ACS J. Surf. Colloids 2008, 24, 12405–12409. [Google Scholar] [CrossRef] [Green Version]
- Hermanson, G.T. Bioconjugated Techniques, 2nd ed.; Elsevier: Alpharetta, GA, USA, 2008. [Google Scholar]
- Kaiser, E.; Colescott, R.L.; Bossinger, C.D.; Cook, P.I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 1970, 34, 595–598. [Google Scholar] [CrossRef]
- Arkles, B.; Pan, Y.; Larson, G.L.; Singh, M. Enhanced hydrolytic stability of siliceous surfaces modified with pendant dipodal silanes. Chemistry 2014, 20, 9442–9450. [Google Scholar] [CrossRef] [Green Version]
Short Name | Density (g/mL) | MW (g/mol) | TOT V(L) | Silane V (mL) | Mass (g) | n (mmol) | M (mol/L) | v/v% |
---|---|---|---|---|---|---|---|---|
APTES | 0.95 | 221.37 | 0.02 | 0.60 | 0.56 | 2.00 | 0.13 | 3.00% |
AEAPTES | 1.29 | 222.36 | 0.02 | 0.58 | 0.57 | 2.00 | 0.13 | 2.93% |
AHAMTES | 0.99 | 292.49 | 0.02 | 0.69 | 0.75 | 2.00 | 0.13 | 3.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grillo, F.; Canfarotta, F.; Bedwell, T.S.; Arnold, M.; Le Saint, W.; Sahota, R.; Ladwa, K.; Crane, J.; Heavens, T.; Piletska, E.; et al. An Upgraded Protocol for the Silanisation of the Solid Phase for the Synthesis of Molecularly Imprinted Polymers. Chemosensors 2023, 11, 437. https://doi.org/10.3390/chemosensors11080437
Grillo F, Canfarotta F, Bedwell TS, Arnold M, Le Saint W, Sahota R, Ladwa K, Crane J, Heavens T, Piletska E, et al. An Upgraded Protocol for the Silanisation of the Solid Phase for the Synthesis of Molecularly Imprinted Polymers. Chemosensors. 2023; 11(8):437. https://doi.org/10.3390/chemosensors11080437
Chicago/Turabian StyleGrillo, Fabiana, Francesco Canfarotta, Thomas Sean Bedwell, Magaly Arnold, William Le Saint, Rajdeep Sahota, Krunal Ladwa, Joshua Crane, Tobias Heavens, Elena Piletska, and et al. 2023. "An Upgraded Protocol for the Silanisation of the Solid Phase for the Synthesis of Molecularly Imprinted Polymers" Chemosensors 11, no. 8: 437. https://doi.org/10.3390/chemosensors11080437
APA StyleGrillo, F., Canfarotta, F., Bedwell, T. S., Arnold, M., Le Saint, W., Sahota, R., Ladwa, K., Crane, J., Heavens, T., Piletska, E., & Piletsky, S. (2023). An Upgraded Protocol for the Silanisation of the Solid Phase for the Synthesis of Molecularly Imprinted Polymers. Chemosensors, 11(8), 437. https://doi.org/10.3390/chemosensors11080437