One-Step Chemiluminescent Assay for Hydrogen Peroxide Analysis in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of the Chemiluminescent Biosensor for the Detection of H2O2
2.3. Interference Studies
2.4. Hydrogen Peroxide Detection in Real Samples
3. Results and Discussion
3.1. Principle of the Developed Assay
3.2. Optimization of Incubation Time
3.3. Detection of Hydrogen Peroxide
3.4. Selectivity and Reproducibility of the Developed H2O2 Biosensor
3.5. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Rotariu, L.; Lagarde, F.; Jaffrezic-Renault, N.; Bala, C. Electrochemical biosensors for fast detection of food contaminants–trends and perspective. TrAC Trends Anal. Chem. 2016, 79, 80–87. [Google Scholar] [CrossRef]
- Khanmohammadi, A.; Jalili Ghazizadeh, A.; Hashemi, P.; Afkhami, A.; Arduini, F.; Bagheri, H. An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. J. Iran. Chem. Soc. 2020, 17, 2429–2447. [Google Scholar] [CrossRef]
- Fang, L.; Liao, X.; Jia, B.; Shi, L.; Kang, L.; Zhou, L.; Kong, W. Recent progress in immunosensors for pesticides. Biosens. Bioelectron. 2020, 164, 112255. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Saji, K.J.; Jayaraj, M.K. Chapter 5—An introduction to biosensors. In Nanomaterials for Sensing and Optoelectronic Applications; Jayaraj, M.K., Subha, P.P., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 91–107. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, Y.; Kianfar, E. Nano Biosensors: Properties, applications and electrochemical techniques. J. Mater. Res. Technol. 2021, 12, 1649–1672. [Google Scholar] [CrossRef]
- Andrés, C.M.; de la Lastra, J.M.P.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Chemistry of Hydrogen Peroxide Formation and Elimination in Mammalian Cells, and Its Role in Various Pathologies. Stresses 2022, 2, 256–274. [Google Scholar] [CrossRef]
- Shamkhalichenar, H.; Choi, J.-W. Non-enzymatic hydrogen peroxide electrochemical sensors based on reduced graphene oxide. J. Electrochem. Soc. 2020, 167, 037531. [Google Scholar] [CrossRef]
- Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P.G. Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 2007, 8, 722–728. [Google Scholar] [CrossRef]
- Forman, H.J.; Bernardo, A.; Davies, K.J. What is the concentration of hydrogen peroxide in blood and plasma? Arch. Biochem. Biophys. 2016, 603, 48–53. [Google Scholar] [CrossRef]
- Rojkind, M.; Domínguez-Rosales, J.A.; Nieto, N.; Greenwel, P. Role of hydrogen peroxide and oxidative stress in healing responses. Cell. Mol. Life Sci. CMLS 2002, 59, 1872–1891. [Google Scholar] [CrossRef]
- Lean, J.M.; Jagger, C.J.; Kirstein, B.; Fuller, K.; Chambers, T. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology 2005, 146, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.; Kim, S.W.; Yu, X.-H.; Shanklin, J. Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc. Natl. Acad. Sci. USA 2013, 110, 3191–3196. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.; Hofferber, E.M.; Stapleton, J.A.; Iverson, N.M. Hydrogen peroxide sensors for biomedical applications. Chemosensors 2019, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Appl. Catal. A Gen. 2008, 350, 133–149. [Google Scholar] [CrossRef]
- Nasir, M.; Nawaz, M.H.; Latif, U.; Yaqub, M.; Hayat, A.; Rahim, A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim. Acta 2017, 184, 323–342. [Google Scholar] [CrossRef]
- Zhao, H.; Qiu, X.; Su, E.; Huang, L.; Zai, Y.; Liu, Y.; Chen, H.; Wang, Z.; Chen, Z.; Li, S.; et al. Multiple chemiluminescence immunoassay detection of the concentration ratio of glycosylated hemoglobin A1c to total hemoglobin in whole blood samples. Anal. Chim. Acta 2022, 1192, 339379. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Yin, H.; Dong, J.; Fan, H.; Liu, T.; Ju, P.; Ai, S. A mimic peroxidase biosensor based on calcined layered double hydroxide for detection of H2O2. Biosens. Bioelectron. 2011, 26, 3278–3283. [Google Scholar] [CrossRef]
- Bocanegra-Rodríguez, S.; Jornet-Martínez, N.; Molins-Legua, C.; Campíns-Falcó, P. New reusable solid biosensor with covalent immobilization of the horseradish peroxidase enzyme: In situ liberation studies of hydrogen peroxide by portable chemiluminescent determination. ACS Omega 2020, 5, 2419–2427. [Google Scholar] [CrossRef] [Green Version]
- Devaraj, M.; Rajendran, S.; Jebaranjitham, J.N.; Ranjithkumar, D.; Sathiyaraj, M.; Manokaran, J.; Sundaravadivel, E.; Santhanalakshmi, J.; Ponce, L.C. Horseradish peroxidase-immobilized graphene oxide-chitosan gold nanocomposites as highly sensitive electrochemical biosensor for detection of hydrogen peroxide. J. Electrochem. Soc. 2020, 167, 147517. [Google Scholar] [CrossRef]
- Behrouzifar, F.; Shahidi, S.-A.; Chekin, F.; Hosseini, S.; Ghorbani-HasanSaraei, A. Colorimetric assay based on horseradish peroxidase/reduced graphene oxide hybrid for sensitive detection of hydrogen peroxide in beverages. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 257, 119761. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Mishra, P.K.; Yoo, C.M.; Jung, M.; Mun, J.Y.; Rhee, H.W. A multifunctional peroxidase-based reaction for imaging, sensing and networking of spatial biology. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2023, 1870, 119428. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Hashemi, S.A.; Iman Moezzi, S.M.; Ravan, N.; Gholami, A.; Lai, C.W.; Chiang, W.-H.; Omidifar, N.; Yousefi, K.; Behbudi, G. Recent advances in enzymes for the bioremediation of pollutants. Biochem. Res. Int. 2021, 2021, 5599204. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Son, S.E.; Seong, G.H. L-Cysteine-Meditated Self-Assembled PtRu Derived Bimetallic Metal–Carbon Hybrid: An Excellent Peroxidase Mimics for Colorimetric and Fluorometric Detection of Hydrogen Peroxide and Cholesterol. Adv. Mater. Interfaces 2021, 8, 2101115. [Google Scholar] [CrossRef]
- Ye, S.; Hu, J.J.; Zhao, Q.A.; Yang, D. Fluorescent probes for in vitro and in vivo quantification of hydrogen peroxide. Chem. Sci. 2020, 11, 11989–11997. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, D.; Xu, Q.; Li, J.; Luo, W.; Yang, J.; Pan, Y.; Huang, T.; Wang, Y.; He, B. Metal–Organic Framework-Mediated Bioorthogonal Reaction to Immobilize Bacteria for Ultrasensitive Fluorescence Counting Immunoassays. ACS Appl. Mater. Interfaces 2023, 15, 5010–5018. [Google Scholar] [CrossRef]
- Wignarajah, S.; Chianella, I.; Tothill, I.E. Development of Electrochemical Immunosensors for HER-1 and HER-2 Analysis in Serum for Breast Cancer Patients. Biosensors 2023, 13, 355. [Google Scholar] [CrossRef]
- Colmati, F.; Sgobbi, L.F.; Teixeira, G.F.; Vilela, R.S.; Martins, T.D.; Figueiredo, G.O. Electrochemical biosensors containing pure enzymes or crude extracts as enzyme sources for pesticides and phenolic compounds with pharmacological property detection and quantification. In Biosensors for Environmental Monitoring; IntechOpen: London, UK, 2019. [Google Scholar]
- Wang, H.; Guan, R.; Fan, C.; Zhu, D.; Li, G. A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film. Sens. Actuators B Chem. 2002, 84, 214–218. [Google Scholar] [CrossRef]
- Vial, L.; Dumy, P. Artificial enzyme-based biosensors. New J. Chem. 2009, 33, 939–946. [Google Scholar] [CrossRef]
- Bazin, I.; Tria, S.A.; Hayat, A.; Marty, J.-L. New biorecognition molecules in biosensors for the detection of toxins. Biosens. Bioelectron. 2017, 87, 285–298. [Google Scholar] [CrossRef]
- Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin–A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Spadiut, O.; Herwig, C. Production and purification of the multifunctional enzyme horseradish peroxidase. Pharm. Bioprocess. 2013, 1, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Malhotra, R.; Malhotra, B.; Grover, S. Co-immobilization of cholesterol oxidase and horseradish peroxidase in a sol–gel film. Anal. Chim. Acta 2000, 414, 43–50. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, W.; Gao, J.; Zhou, L.; He, Y. Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal. Enzym. Microb. Technol. 2014, 55, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-Y.; Huang, K.-J.; Zhao, S.-F.; Fan, Y.; Wu, Z.-W. Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode. Bioelectrochemistry 2011, 82, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Wang, H.; Sun, S.; Zhu, D.; Wagner, G.; Li, G. Electron-Transfer Reactivity and Enzymatic Activity of Hemoglobin in a SP Sephadex Membrane. Anal. Chem. 2001, 73, 2850–2854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chouchane, S.; Magliozzo, R.S.; Rusling, J.F. Direct Voltammetry and Catalysis with Mycobacterium t uberculosis Catalase− Peroxidase, Peroxidases, and Catalase in Lipid Films. Anal. Chem. 2002, 74, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Saleh Ahammad, A. Hydrogen peroxide biosensors based on horseradish peroxidase and hemoglobin. J. Biosens. Bioelectron. 2013, 9, 2. [Google Scholar]
- Yin, Y.; Gao, C.; Xiao, Q.; Lin, G.; Lin, Z.; Cai, Z.; Yang, H. Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform. ACS Appl. Mater. Interfaces 2016, 8, 29052–29061. [Google Scholar] [CrossRef]
- Reeder, B.J. Redox and peroxidase activities of the hemoglobin superfamily: Relevance to health and disease. Antioxid. Redox Signal. 2017, 26, 763–776. [Google Scholar] [CrossRef]
- Shi, F.; Wang, W.; Gong, S.; Lei, B.; Li, G.; Lin, X.; Sun, Z.; Sun, W. Application of Titanium Dioxide Nanowires for the Direct Electrochemistry of Hemoglobin and Electrocatalysis. J. Chin. Chem. Soc. 2015, 62, 554–561. [Google Scholar] [CrossRef]
- Zhao, C.; Wan, L.; Jiang, L.; Wang, Q.; Jiao, K. Highly sensitive and selective cholesterol biosensor based on direct electron transfer of hemoglobin. Anal. Biochem. 2008, 383, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Song, Y.; Gao, Y.; Yang, X.; Bao, S.-J. Stable hemoglobin-based biosensor based on coordination-assisted microfluidic technology for hydrogen peroxide determination. Sens. Actuators Rep. 2023, 5, 100146. [Google Scholar] [CrossRef]
- Ahmad, T.; Iqbal, A.; Halim, S.A.; Uddin, J.; Khan, A.; El Deeb, S.; Al-Harrasi, A. Recent advances in Electrochemical sensing of hydrogen peroxide (H2O2) released from cancer cells. Nanomaterials 2022, 12, 1475. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cai, S.; Ren, Q.-Q.; Wen, W.; Zhao, Y.-D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yuan, R.; Chai, Y.; Hu, F. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Microchim. Acta 2013, 180, 15–32. [Google Scholar] [CrossRef]
- Jiang, L.-C.; Zhang, W.-D. Electrodeposition of TiO2 Nanoparticles on Multiwalled Carbon Nanotube Arrays for Hydrogen Peroxide Sensing. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2009, 21, 988–993. [Google Scholar] [CrossRef]
- Xu, B.; Zhi, C.; Shi, P. Latest advances in MXene biosensors. J. Phys. Mater. 2020, 3, 031001. [Google Scholar] [CrossRef]
- Venezia, V.; Sannino, F.; Costantini, A.; Silvestri, B.; Cimino, S.; Califano, V. Mesoporous silica nanoparticles for β-glucosidase immobilization by templating with a green material: Tannic acid. Microporous Mesoporous Mater. 2020, 302, 110203. [Google Scholar] [CrossRef]
- Han, G.-C.; Su, X.; Hou, J.; Ferranco, A.; Feng, X.-Z.; Zeng, R.; Chen, Z.; Kraatz, H.-B. Disposable electrochemical sensors for hemoglobin detection based on ferrocenoyl cysteine conjugates modified electrode. Sens. Actuators B Chem. 2019, 282, 130–136. [Google Scholar] [CrossRef]
- Elewi, A.S.; Al-Shammaree, S.A.W.; Al Sammarraie, A.K.M.A. Hydrogen peroxide biosensor based on hemoglobin-modified gold nanoparticles–screen printed carbon electrode. Sens. Bio-Sens. Res. 2020, 28, 100340. [Google Scholar] [CrossRef]
- Ding, Y.; Jia, W.; Zhang, H.; Li, B.; Gu, Z.; Lei, Y. Carbonized hemoglobin nanofibers for enhanced H2O2 detection. Electroanalysis 2010, 22, 1911–1917. [Google Scholar] [CrossRef]
- Karav, S.; Cohen, J.L.; Barile, D.; de Moura Bell, J.M.L.N. Recent advances in immobilization strategies for glycosidases. Biotechnol. Prog. 2017, 33, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filho, D.G.; Silva, A.G.; Guidini, C.Z. Lipases: Sources, immobilization methods, and industrial applications. Appl. Microbiol. Biotechnol. Adv. 2019, 103, 7399–7423. [Google Scholar]
- Eş, I.; Vieira, J.D.G.; Amaral, A.C. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol. Appl. Biochem. 2015, 99, 2065–2082. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.H.; Kim, M. An overview of techniques in enzyme immobilization. Appl. Sci. Converg. Technol. 2017, 26, 157–163. [Google Scholar] [CrossRef]
- Cosnier, S. Biosensors based on immobilization of biomolecules by electrogenerated polymer films: New perspectives. Appl. Biochem. Biotechnol. 2000, 89, 127–138. [Google Scholar] [CrossRef]
- Nie, Y.-L.; Wang, W.-H. Immobilized enzyme reactor in on-line LC and its application in drug screening. Chromatographia 2009, 69, 5–12. [Google Scholar] [CrossRef]
- Banala, S.; Arts, R.; Aper, S.J.; Merkx, M. No washing, less waiting: Engineering biomolecular reporters for single-step antibody detection in solution. Org. Biomol. Chem. 2013, 11, 7642–7649. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Homogeneous assays using aptamers. Analyst 2011, 136, 257–274. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Y.; Liu, J.; He, J. Luminol, horseradish peroxidase and antibody ternary codified gold nanoparticles for a label-free homogenous chemiluminescent immunoassay. Anal. Methods 2018, 10, 722–729. [Google Scholar] [CrossRef]
- Takkinen, K.; Žvirblienė, A. Recent advances in homogenous immunoassays based on resonance energy transfer. Curr. Opin. Biotechnol. 2019, 55, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Elbelazi, A.; Canfarotta, F.; Czulak, J.; Whitcombe, M.J.; Piletsky, S.; Piletska, E. Development of a homogenous assay based on fluorescent imprinted nanoparticles for analysis of nitroaromatic compounds. Nano Res. 2019, 12, 3044–3050. [Google Scholar] [CrossRef]
- Fan, A.; Lau, C.; Lu, J. Magnetic Bead-Based Chemiluminescent Metal Immunoassay with a Colloidal Gold Label. Anal. Chem. 2005, 77, 3238–3242. [Google Scholar] [CrossRef]
- Sorouraddin, M.H.; Iranifam, M.; Imani-Nabiyyi, A. A Novel Captopril Chemiluminescence System for Determination of Copper(II) in Human Hair and Cereal Flours. J. Fluoresc. 2009, 19, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Xu, J.-Z.; Tu, Y.-F.; Xu, S.; Zhu, J.-J. Electrogenerated chemiluminescence of CdS spherical assemblies. Electrochem. Commun. 2005, 7, 5–9. [Google Scholar] [CrossRef]
- Zaheer, F.; Naz, M.Y.; Shukrullah, S.; Hussain, H. Chemiluminescence Sensors for Environmental Monitoring. In Nanobiosensors for Environmental Monitoring: Fundamentals and Application; Singh, R.P., Ukhurebor, K.E., Singh, J., Adetunji, C.O., Singh, K.R.B., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 203–218. [Google Scholar] [CrossRef]
- Alahmad, W.; Varanusupakul, P.; Kaneta, T. Chapter 7—Chemiluminescence paper-based analytical devices. In Paper-Based Analytical Devices for Chemical Analysis and Diagnostics; de Araujo, W.R., Paixão, T.R.L.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 169–182. [Google Scholar] [CrossRef]
- Li, B.; Kim, Y.L.; Lippert, A.R. Chemiluminescence Measurement of Reactive Sulfur and Nitrogen Species. Antioxid. Redox Signal. 2022, 36, 337–353. [Google Scholar] [CrossRef]
- Lei, J.; Liu, W.; Jin, Y.; Li, B. Oxygen Vacancy-Dependent Chemiluminescence: A Facile Approach for Quantifying Oxygen Defects in ZnO. Anal. Chem. 2022, 94, 8642–8650. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Z.; Zhao, L. Chemiluminescent flow-through sensor for hydrogen peroxide based on sol–gel immobilized hemoglobin as catalyst. Anal. Chim. Acta 2001, 445, 161–167. [Google Scholar] [CrossRef]
- Alpeeva, I.S.; Sakharov, I.Y. Luminol–hydrogen peroxide chemiluminescence produced by sweet potato peroxidase. Luminescence 2007, 22, 92–96. [Google Scholar] [CrossRef]
- Ahn, K.-S.; Lee, J.H.; Park, J.-M.; Choi, H.N.; Lee, W.-Y. Luminol chemiluminescence biosensor for glycated hemoglobin (HbA1c) in human blood samples. Biosens. Bioelectron. 2016, 75, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Vallelian, F.; Pimenova, T.; Pereira, C.P.; Abraham, B.; Mikolajczyk, M.G.; Schoedon, G.; Zenobi, R.; Alayash, A.I.; Buehler, P.W.; Schaer, D.J. The reaction of hydrogen peroxide with hemoglobin induces extensive alpha-globin crosslinking and impairs the interaction of hemoglobin with endogenous scavenger pathways. Free Radic. Biol. Med. 2008, 45, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Firoozbakhtian, A.; Sojic, N.; Xu, G.; Hosseini, M. Electrochemiluminescence Sensors in Bioanalysis. In Encyclopedia of Sensors and Biosensors (First Edition); Narayan, R., Ed.; Elsevier: Oxford, UK, 2022; pp. 317–340. [Google Scholar] [CrossRef]
- Altinkaynak, C. Hemoglobin–metal2+ phosphate nanoflowers with enhanced peroxidase-like activities and their performance in the visual detection of hydrogen peroxide. New J. Chem. 2021, 45, 1573–1583. [Google Scholar] [CrossRef]
- Murphy, M.; Theyagarajan, K.; Thenmozhi, K.; Senthilkumar, S. Direct electrochemistry of covalently immobilized hemoglobin on a naphthylimidazolium butyric acid ionic liquid/MWCNT matrix. Colloids Surf. B Biointerfaces 2021, 199, 111540. [Google Scholar] [CrossRef] [PubMed]
- Elancheziyan, M.; Senthilkumar, S. Covalent immobilization and enhanced electrical wiring of hemoglobin using gold nanoparticles encapsulated PAMAM dendrimer for electrochemical sensing of hydrogen peroxide. Appl. Surf. Sci. 2019, 495, 143540. [Google Scholar] [CrossRef]
- Sheikholeslam, M.; Nanda, P.; Sanati, A.; Pritzker, M.; Chen, P. Direct electrochemistry of hemoglobin/peptide-carbon nanotube modified electrode for hydrogen peroxide biosensing. Mater. Lett. 2023, 335, 133799. [Google Scholar] [CrossRef]
- Kafi, A.; Wali, Q.; Jose, R.; Biswas, T.K.; Yusoff, M.M. A glassy carbon electrode modified with SnO2 nanofibers, polyaniline and hemoglobin for improved amperometric sensing of hydrogen peroxide. Microchim. Acta 2017, 184, 4443–4450. [Google Scholar] [CrossRef]
- Baghayeri, M.; Zare, E.N.; Lakouraj, M.M. Monitoring of hydrogen peroxide using a glassy carbon electrode modified with hemoglobin and a polypyrrole-based nanocomposite. Microchim. Acta 2015, 182, 771–779. [Google Scholar] [CrossRef]
- Baghayeri, M.; Veisi, H. Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens. Bioelectron. 2015, 74, 190–198. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, H.; Wang, B.; Shi, F.; Yan, L.; Zeng, L.; Li, L.; He, S.; Sun, W. An electrochemical biosensor based on hemoglobin and FeS@ MoS2-C nanocomposite for nitrite, hydrogen peroxide and bromate detection. Int. J. Electrochem. Sci 2022, 17, 2. [Google Scholar] [CrossRef]
- Kanwal, A.; Saif, B.; Muhammad, A.; Liu, W.; Liu, J.; Ren, H.; Yang, P.; Lei, Z. Hemoglobin-Promoted Growth of Polyhedral Gold Nanoparticles for the Detection of Glucose, H2O2, and Ascorbic Acid. ACS Appl. Nano Mater. 2023, 6, 4734–4746. [Google Scholar] [CrossRef]
Sample | H2O2 Concentration (mM) | Concentration Found (mM) | Recovery Percentage % | RSD% (n = 3) |
---|---|---|---|---|
Water | 0.5 | 0.45 | 90 | 0.97 |
2 | 2.67 | 133.5 | 2.36 | |
4 | 4.81 | 120.25 | 1.43 | |
12 | 12.36 | 103 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teniou, A.; Madi, I.A.; Mouhoub, R.; Marty, J.L.; Rhouati, A. One-Step Chemiluminescent Assay for Hydrogen Peroxide Analysis in Water. Chemosensors 2023, 11, 455. https://doi.org/10.3390/chemosensors11080455
Teniou A, Madi IA, Mouhoub R, Marty JL, Rhouati A. One-Step Chemiluminescent Assay for Hydrogen Peroxide Analysis in Water. Chemosensors. 2023; 11(8):455. https://doi.org/10.3390/chemosensors11080455
Chicago/Turabian StyleTeniou, Ahlem, Ibrahim A. Madi, Riane Mouhoub, Jean Louis Marty, and Amina Rhouati. 2023. "One-Step Chemiluminescent Assay for Hydrogen Peroxide Analysis in Water" Chemosensors 11, no. 8: 455. https://doi.org/10.3390/chemosensors11080455
APA StyleTeniou, A., Madi, I. A., Mouhoub, R., Marty, J. L., & Rhouati, A. (2023). One-Step Chemiluminescent Assay for Hydrogen Peroxide Analysis in Water. Chemosensors, 11(8), 455. https://doi.org/10.3390/chemosensors11080455