Emerging Luminescent Materials for Information Encryption and Anti-Counterfeiting: Stimulus-Response AIEgens and Room-Temperature Phosphorescent Materials
Abstract
:1. Introduction
2. Application of AIE Materials in Information Encryption and Anti-Counterfeiting
2.1. AIEgens
2.2. AIEgens-Matrix Composite Materials
2.3. AIE Carbon Dots
3. Application of the RTP Materials in the Information Encryption and Anti-Counterfeiting
3.1. RTP Molecular Systems
3.2. RTP Molecules-Matrix Composite Materials
3.3. Phosphorescent Carbon Dots
4. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L. Technology Designed to Combat Fakes in the Global Supply Chain. Bus. Horiz. 2013, 56, 167–177. [Google Scholar] [CrossRef]
- Pyzik, O.Z.; Abubakar, I. Fighting the Fakes: Tackling Substandard and Falsified Medicines. Nat. Rev. Dis. Primers 2022, 8, 55. [Google Scholar] [CrossRef]
- Quan, Z.; Zhang, Q.; Li, H.; Sun, S.; Xu, Y. Fluorescent Cellulose-Based Materials for Information Encryption and Anti-Counterfeiting. Coordin. Chem. Rev. 2023, 493, 215287. [Google Scholar] [CrossRef]
- Li, H.; Zhu, M.; Tian, F.; Hua, W.; Guo, J.; Wang, C. Polychrome Photonic Crystal Stickers with Thermochromic Switchable Colors for Anti-Counterfeiting and Information Encryption. Chem. Eng. J. 2021, 426, 130683. [Google Scholar] [CrossRef]
- Xu, F.-F.; Gong, Z.-L.; Zhong, Y.-W.; Yao, J.; Zhao, Y.S. Wavelength-Tunable Single-Mode Microlasers Based on Photoresponsive Pitch Modulation of Liquid Crystals for Information Encryption. Research 2020, 2020, 65394. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Duan, J.; Wei, S.; Tang, S.; Yuan, W.Z. Time-Dependent Afterglow from a Single Component Organic Luminogen. Research 2021, 2021, 9757460. [Google Scholar] [CrossRef]
- Du, H.; Zhao, W.; Xia, Y.; Xie, S.; Tao, Y.; Gao, Y.Q.; Zhang, J.; Wan, X. Effect of Stereoregularity on Excitation-Dependent Fluorescence and Room-Temperature Phosphorescence of Poly(2-Vinylpyridine). Aggregate 2023, 4, e276. [Google Scholar] [CrossRef]
- Wang, X.; Feng, J.; Yu, H.; Jin, Y.; Davidson, A.; Li, Z.; Yin, Y. Anisotropically Shaped Magnetic/Plasmonic Nanocomposites for Information Encryption and Magnetic-Field-Direction Sensing. Research 2018, 2018, 7527825. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, M.; Tong, Z.; Zhao, S.; Zhou, Y.; Wang, Y.; Jin, S.; Zhang, J.; Yao, H.-B.; Zhu, M.; et al. Multimodal-Responsive Circularly Polarized Luminescence Security Materials. J. Am. Chem. Soc. 2023, 145, 4246–4253. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, Z.; Willner, I.; Ma, X. Multicolor Circularly Polarized Luminescence of a Single-Component System Revealing Multiple Information Encryption. CCS Chem. 2023. [Google Scholar] [CrossRef]
- Lin, S.; Tang, Y.; Kang, W.; Bisoyi, H.K.; Guo, J.; Li, Q. Photo-Triggered Full-Color Circularly Polarized Luminescence Based on Photonic Capsules for Multilevel Information Encryption. Nat. Commun. 2023, 14, 3005. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Z.; Ma, Z.; Fan, F.; Liu, W. Achieving Multimodal Emission in Zn4B6O13:Tb3+,Yb3+ for Information Encryption and Anti-Counterfeiting. Inorg. Chem. 2020, 59, 15681–15689. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.F.; Lei, G.; Huang, C.Z. Dark-Field Microscopy: Recent Advances in Accurate Analysis and Emerging Applications. Anal. Chem. 2021, 93, 4707–4726. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.F.; Zou, H.Y.; Gao, M.X.; Li, Y.F.; Huang, C.Z. Plasmonic Locator with Sub-Diffraction-Limited Resolution for Continuously Accurate Positioning. Aggregate 2022, 3, e167. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, Z.; Liang, L.; Li, Y.F.; Huang, C.Z.; Gao, P.F. Dark-Field Imaging Monitoring of Adenosine Triphosphate in Live Cells by Au NBPs@ZIF-8 Nanoprobes. Anal. Chem. 2022, 94, 18107–18113. [Google Scholar] [CrossRef]
- Liu, J.J.; Wen, S.; Yan, H.H.; Cheng, R.; Zhu, F.; Gao, P.F.; Zou, H.Y.; Huang, C.Z.; Wang, J. The Accurate Imaging of Collective Gold Nanorods with a Polarization-Dependent Dark-Field Light Scattering Microscope. Anal. Chem. 2023, 95, 1169–1175. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Q.; He, W.; Yang, C.P.; Gao, P.F.; Li, Y.F.; Huang, C.Z. Visual Identification of 1O2-Induced Crystal Structure Transformation of Single Zr-MOF by Dark-Field Microscopy. Chem. Commun. 2023, 59, 5729–5732. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, Y.; He, W.; Li, Y.F.; Gao, P.F.; Huang, C.Z. Plasmon-Dependent Photophysical Preparation of Reversible Au@Safranine T Core-Shell Nanostructures with Edit and Erase Features. Appl. Surf. Sci. 2023, 619, 156709. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, H.; Yu, J. Luminescence Anti-Counterfeiting: From Elementary to Advanced. Aggregate 2021, 2, 20–34. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Yuan, J.; Bao, J. Multidimensional Information Encryption and Storage: When the Input Is Light. Research 2021, 2021, 7897849. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Z.; Turley, A.T.; Wang, L.; McGonigal, P.R.; Tu, Y.; Li, Y.; Wang, Z.; Kwok, R.T.K.; Lam, J.W.Y.; et al. Aggregate Science: From Structures to Properties. Adv. Mater. 2020, 32, 2001457. [Google Scholar] [CrossRef]
- Tang, B.Z. Aggregology: Exploration and Innovation at Aggregate Level. Aggregate 2020, 1, 4–5. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, G.; Qin, A.; Tang, B.Z. Aggregation-Induced Emission (AIE): Emerging Technology Based on Aggregate Science. Pure Appl. Chem. 2021, 93, 1383–1402. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chem. Commun. 2001, 381, 1740–1741. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Zhang, Z.; Song, N.; Li, M.; Sun, P.; Chen, X.; Wang, D.; Tang, B.Z. Aggregation-Enhanced Theranostics: AIE Sparkles in Biomedical Field. Aggregate 2020, 1, 80–106. [Google Scholar] [CrossRef]
- Duo, Y.; Luo, G.; Zhang, W.; Wang, R.; Xiao, G.G.; Li, Z.; Li, X.; Chen, M.; Yoon, J.; Tang, B.Z. Noncancerous Disease-Targeting AIEgens. Chem. Soc. Rev. 2023, 52, 1024–1067. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-J.; Jiang, W.; Yuan, L.; Duan, C.; Yuan, Q.; Long, Z.; Lou, X.; Xia, F. Recent Advances in Stimuli-Responsive Theranostic Systems with Aggregation-Induced Emission Characteristics. Aggregate 2021, 2, 48–65. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, H.T.; Chen, X.Y.; Gao, P.F.; Hu, C.-H. A Multifunctional AIEgen with High Cell-Penetrating Ability for Intracellular Fluorescence Assays, Imaging and Drug Delivery. Mater. Chem. Front. 2019, 3, 1151–1158. [Google Scholar] [CrossRef]
- He, X.; Xiong, L.-H.; Huang, Y.; Zhao, Z.; Wang, Z.; Lam, J.W.Y.; Kwok, R.T.K.; Tang, B.Z. AIE-Based Energy Transfer Systems for Biosensing, Imaging, and Therapeutics. TrAC Trend. Anal. Chem. 2020, 122, 115743. [Google Scholar] [CrossRef]
- Niu, G.; Zhang, R.; Shi, X.; Park, H.; Xie, S.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. AIE Luminogens as Fluorescent Bioprobes. TrAC Trend. Anal. Chem. 2020, 123, 115769. [Google Scholar] [CrossRef]
- Yang, J.; Fang, M.; Li, Z. Organic Luminescent Materials: The Concentration on Aggregates from Aggregation-Induced Emission. Aggregate 2020, 1, 6–18. [Google Scholar] [CrossRef]
- Feng, X.; Xu, Z.; Hu, Z.; Qi, C.; Luo, D.; Zhao, X.; Mu, Z.; Redshaw, C.; Lam, J.W.Y.; Ma, D.; et al. Pyrene-Based Blue Emitters with Aggregation-Induced Emission Features for High-Performance Organic Light-Emitting Diodes. J. Mater. Chem. C 2019, 7, 2283–2290. [Google Scholar] [CrossRef]
- Wang, M.; Liang, H.; Wang, L.; Zhang, H.; Wang, J.; Wei, Y.; He, X.; Yang, Y. First AIE Probe for Lithium-Metal Anodes. Matter 2022, 5, 3530–3540. [Google Scholar] [CrossRef]
- Zhang, J.; He, B.; Hu, Y.; Alam, P.; Zhang, H.; Lam, J.W.Y.; Tang, B.Z. Stimuli-Responsive AIEgens. Adv. Mater. 2021, 33, 2008071. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, B.; Zhang, X.; Zhang, G. AIE-Active Β-Diketones Containing Pyridiniums: Fluorogenic Binding to Cellulose and Water-Vapour-Recoverable Mechanochromic Luminescence. Mater. Chem. Front. 2017, 1, 693–696. [Google Scholar] [CrossRef]
- Duan, C.; Zhou, Y.; Shan, G.-G.; Chen, Y.; Zhao, W.; Yuan, D.; Zeng, L.; Huang, X.; Niu, G. Bright Solid-State Red-Emissive Bodipys: Facile Synthesis and Their High-Contrast Mechanochromic Properties. J. Mater. Chem. C 2019, 7, 3471–3478. [Google Scholar] [CrossRef]
- Zhang, J.; He, B.; Wu, W.; Alam, P.; Zhang, H.; Gong, J.; Song, F.; Wang, Z.; Sung, H.H.Y.; Williams, I.D.; et al. Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding. J. Am. Chem. Soc. 2020, 142, 14608–14618. [Google Scholar] [CrossRef]
- Tu, Y.; Yu, Y.; Xiao, D.; Liu, J.; Zhao, Z.; Liu, Z.; Lam, J.W.Y.; Tang, B.Z. An Intelligent AIEgen with Nonmonotonic Multiresponses to Multistimuli. Adv. Sci. 2020, 7, 2003525. [Google Scholar] [CrossRef]
- Zhang, J.; Li, A.; Zou, H.; Peng, J.; Guo, J.; Wu, W.; Zhang, H.; Zhang, J.; Gu, X.; Xu, W.; et al. A “Simple” Donor–Acceptor AIEgen with Multi-Stimuli Responsive Behavior. Mater. Horiz. 2020, 7, 135–142. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, X.; Liu, L.; Li, X.; Jiang, S.; Niu, C.; Xie, P.; Liu, G.; Cao, Z.; Ren, Y.; et al. Multi-Stimuli-Induced Mechanical Bending and Reversible Fluorescence Switching in a Single Organic Crystal. Angew. Chem. Int. Ed. 2022, 61, e202113073. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Liu, Y. An AIE-Active Dual Fluorescent Switch with Negative Photochromism for Information Display and Encryption. New J. Chem. 2021, 45, 9872–9881. [Google Scholar] [CrossRef]
- Liang, X.; Dong, B.; Wang, H.; Zhang, Z.; Wang, S.; Li, J.; Zhao, B.; Li, Z.; Xing, Y.; Guo, K. An AIE-Active Acridine Functionalized Spiro[Fluorene-9,9′-Xanthene] Luminophore with Mechanoresponsive Luminescence for Anti-Counterfeiting, Information Encryption and Blue Oleds. J. Mater. Chem. C 2022, 10, 7857–7865. [Google Scholar] [CrossRef]
- Jiang, H.; Li, G.; Liu, F.; Guo, Y.; Wang, H.; Li, J.; Zhang, R.; Xia, Y.; Guo, K. Opposite Thermal-Stimuli Fluorescent Behavior Induced by π-Bridge in Two Carbazole Derivatives for High-Level Information Encryption. Dyes Pigments 2023, 217, 111437. [Google Scholar] [CrossRef]
- Zuo, Y.; Liu, J.; Li, P.; Li, K.; Lam, J.W.Y.; Wu, D.; Tang, B.Z. Full-Color-Tunable AIE Luminogens for 4d Code, Security Patterns, and Multicolor Leds. Cell Rep. Phys. Sci. 2023, 4, 101202. [Google Scholar] [CrossRef]
- He, X.; Zhang, J.; Liu, X.; Jin, Z.; Lam, J.W.Y.; Tang, B.Z. A Multiresponsive Functional AIEgen for Spatiotemporal Pattern Control and All-Round Information Encryption. Angew. Chem. Int. Ed. 2023, 62, e202300353. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, H.; Liu, X.; Yang, X.; Broman, S.L.; Wang, H.; Li, Q.; Lam, J.W.Y.; Zhang, H.; Cacciarini, M.; et al. A Dihydroazulene-Based Photofluorochromic AIE System for Rewritable 4d Information Encryption. Angew. Chem. Int. Ed. 2022, 61, e202208460. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, H.; Luo, Z.; Tang, L.; Dai, B.; Zhou, N.; Liang, E.; Wang, G.; Tang, J. A Light-Fueled Dissipative Aggregation-Induced Emission System for Time-Dependent Information Encryption. Chem. Commun. 2023, 59, 5910–5913. [Google Scholar] [CrossRef]
- Deng, D.-d.; Zou, Y.; Chen, Z.; Liu, S.; Yang, Y.; Pu, S. Finely Regulated Benzothiadiazole Derivatives: Aggregation-Induced Emission (AIE), Hypso- or Bathochromic Mechanofluorochromic Behaviors, and Multilevel Information Encryption Applications. Dyes Pigments 2023, 211, 111051. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, W.; Liao, H.; Lin, R.; He, X.; Zheng, C.; Guo, C.; Liu, H.; Feng, H.-T.; Chen, M. Engineering Isomeric AIEgens Containing Tetraphenylpyrazine for Dual Memory Storage. Chem. Biomed. Imaging 2023. [Google Scholar] [CrossRef]
- Qin, M.; Xu, Y.; Gao, H.; Han, G.; Cao, R.; Guo, P.; Feng, W.; Chen, L. Tetraphenylethylene@Graphene Oxide with Switchable Fluorescence Triggered by Mixed Solvents for the Application of Repeated Information Encryption and Decryption. ACS Appl. Mater. Interfaces 2019, 11, 35255–35263. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Wang, X.; Cai, C.; Ma, J.; Yang, J.; Zhang, L. AIE-Active Freeze-Tolerant Hydrogels Enable Multistage Information Encryption and Decryption at Subzero Temperatures. Engineering 2023, 23, 82–89. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Lin, J.; Su, J.; Redshaw, C.; Feng, X.; Min, Y. Novel Pyrene-Based Aggregation-Induced Emission Luminogen (AIEgen) Composite Phase Change Fibers with Satisfactory Fluorescence Anti-Counterfeiting, Temperature Sensing, and High-Temperature Warning Functions for Solar-Thermal Energy Storage. Adv. Compos. Hybrid Mater. 2023, 6, 126. [Google Scholar] [CrossRef]
- Yao, P.; Qiao, W.; Wang, Y.; Peng, H.; Xie, X.; Li, Z.A. Deep-Red Emissive Squaraine-AIEgen in Elastomer Enabling High Contrast and Fast Thermoresponse for Anti-Counterfeiting and Temperature Sensing. Chem. Eur. J. 2022, 28, e202200725. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, M.; Han, S.; Zhu, L.; Jia, X. Multiple-Stimuli-Responsive Multicolor Luminescent Self-Healing Hydrogel and Application in Information Encryption and Bioinspired Camouflage. J. Mater. Chem. C 2022, 10, 15565–15572. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, H.; Tang, L.; Luo, Z.; Luo, Y.; Zhou, N.; Liang, E.; Wang, G.; Tang, J. A 3D Multistage Information Encryption Platform with Self-Erasure Function Based on a Synergistically Shape-Deformable and AIE Fluorescence-Tunable Hydrogel. Mater. Horiz. 2023, 10, 2496–2505. [Google Scholar] [CrossRef]
- Tao, Y.; Lin, J.; Wang, D.; Wang, Y. Na+-Functionalized Carbon Dots with Aggregation-Induced and Enhanced Cyan Emission. J. Colloid Interf. Sci. 2021, 588, 469–475. [Google Scholar] [CrossRef]
- Yang, L.; Liu, S.; Quan, T.; Tao, Y.; Tian, M.; Wang, L.; Wang, J.; Wang, D.; Gao, D. Sulfuric-Acid-Mediated Synthesis Strategy for Multi-Colour Aggregation-Induced Emission Fluorescent Carbon Dots: Application in Anti-Counterfeiting, Information Encryption, and Rapid Cytoplasmic Imaging. J. Colloid Interf. Sci. 2022, 612, 650–663. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Guo, Z.; Lei, B.; Zhuang, J.; Zhang, X.; Liu, Z.; Hu, C. Hydrophobic Carbon Dots with Blue Dispersed Emission and Red Aggregation-Induced Emission. Nat. Commun. 2019, 10, 1789. [Google Scholar] [CrossRef]
- Kou, X.; Li, L.; Mei, Q.; Dong, W.-F.; Wang, Y. Construction of Multi-Color Fluorescent Carbon Dots by Aggregation-Induced Emission. Spectrochim. Acta A 2022, 279, 121430. [Google Scholar] [CrossRef]
- Zhang, G.; Palmer, G.M.; Dewhirst, M.W.; Fraser, C.L. A Dual-Emissive-Materials Design Concept Enables Tumour Hypoxia Imaging. Nat. Mater. 2009, 8, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.Z.; Shen, X.Y.; Zhao, H.; Lam, J.W.Y.; Tang, L.; Lu, P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q.; et al. Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. J. Phys. Chem. C 2010, 114, 6090–6099. [Google Scholar] [CrossRef]
- An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; et al. Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence. Nat. Mater. 2015, 14, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; He, Z.; Lam, J.W.Y.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B.Z. Rational Molecular Design for Achieving Persistent and Efficient Pure Organic Room-Temperature Phosphorescence. Chemistry 2016, 1, 592–602. [Google Scholar] [CrossRef]
- Fateminia, S.M.A.; Mao, Z.; Xu, S.; Yang, Z.; Chi, Z.; Liu, B. Organic Nanocrystals with Bright Red Persistent Room-Temperature Phosphorescence for Biological Applications. Angew. Chem. Int. Ed. 2017, 56, 12160–12164. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, S.; Wu, M.; Xiao, L.; Fan, Y.; Han, M.; Chang, K.; Zhang, Y.; Zhen, X.; Li, Q.; et al. Mobile Phone Flashlight Excited Red Afterglow Bioimaging. Adv. Mater. 2022, 34, e2201280. [Google Scholar] [CrossRef]
- Xiao, F.; Gao, H.; Lei, Y.; Dai, W.; Liu, M.; Zheng, X.; Cai, Z.; Huang, X.; Wu, H.; Ding, D. Guest-Host Doped Strategy for Constructing Ultralong-Lifetime near-Infrared Organic Phosphorescence Materials for Bioimaging. Nat. Commun. 2022, 13, 186. [Google Scholar] [CrossRef]
- Huang, L.; Qian, C.; Ma, Z. Stimuli-Responsive Purely Organic Room-Temperature Phosphorescence Materials. Chem. Eur. J. 2020, 26, 11914–11930. [Google Scholar] [CrossRef]
- Yang, J.; Fang, M.; Li, Z. Stimulus-Responsive Room Temperature Phosphorescence Materials: Internal Mechanism, Design Strategy, and Potential Application. Acc. Mater. Res. 2021, 2, 644–654. [Google Scholar] [CrossRef]
- Cai, S.; Yao, X.; Ma, H.; Shi, H.; An, Z. Manipulating Intermolecular Interactions for Ultralong Organic Phosphorescence. Aggregate 2023, 4, e320. [Google Scholar] [CrossRef]
- Ma, L.; Ma, X. Recent Advances in Room-Temperature Phosphorescent Materials by Manipulating Intermolecular Interactions. Sci. China Chem. 2023, 66, 304–314. [Google Scholar] [CrossRef]
- Kabe, R.; Adachi, C. Organic Long Persistent Luminescence. Nature 2017, 550, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Du, L.; Zhao, W.; Zhao, Z.; Xiong, Y.; He, X.; Gao, P.F.; Alam, P.; Wang, C.; Li, Z.; et al. Ultralong UV/Mechano-Excited Room Temperature Phosphorescence from Purely Organic Cluster Excitons. Nat. Commun. 2019, 10, 5161. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chi, Z.; Chong, K.C.; Batsanov, A.S.; Yang, Z.; Mao, Z.; Yang, Z.; Liu, B. Carbazole Isomers Induce Ultralong Organic Phosphorescence. Nat. Mater. 2021, 20, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, J.; Chen, B.; He, X.; Li, X.; Wei, P.; Gao, P.F.; Zhang, G.; Lam, J.W.Y.; Tang, B.Z. Highly Efficient and Persistent Room Temperature Phosphorescence from Cluster Exciton Enables Ultrasensitive Off-on Voc Sensing. Matter 2022, 5, 3499–3512. [Google Scholar] [CrossRef]
- Lei, Y.; Dai, W.; Guan, J.; Guo, S.; Ren, F.; Zhou, Y.; Shi, J.; Tong, B.; Cai, Z.; Zheng, J.; et al. Wide-Range Color-Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angew. Chem. Int. Ed. 2020, 59, 16054–16060. [Google Scholar] [CrossRef]
- Chen, X.; Dai, W.; Wu, X.; Su, H.; Chao, C.; Lei, Y.; Shi, J.; Tong, B.; Cai, Z.; Dong, Y. Fluorene-Based Host-Guest Phosphorescence Materials for Information Encryption. Chem. Eng. J. 2021, 426, 131607. [Google Scholar] [CrossRef]
- Dang, Q.; Jiang, Y.; Wang, J.; Wang, J.; Zhang, Q.; Zhang, M.; Luo, S.; Xie, Y.; Pu, K.; Li, Q.; et al. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of near-Infrared Afterglow Imaging Agents. Adv. Mater. 2020, 32, 2006752. [Google Scholar] [CrossRef]
- Kuila, S.; George, S.J. Phosphorescence Energy Transfer: Ambient Afterglow Fluorescence from Water-Processable and Purely Organic Dyes Via Delayed Sensitization. Angew. Chem. Int. Ed. 2020, 59, 9393–9397. [Google Scholar] [CrossRef]
- Li, G.; Jiang, D.; Shan, G.; Song, W.; Tong, J.; Kang, D.; Hou, B.; Mu, Y.; Shao, K.; Geng, Y.; et al. Organic Supramolecular Zippers with Ultralong Organic Phosphorescence by a Dexter Energy Transfer Mechanism. Angew. Chem. Int. Ed. 2022, 61, e202113425. [Google Scholar] [CrossRef]
- Ma, L.; Xu, Q.; Sun, S.; Ding, B.; Huang, Z.; Ma, X.; Tian, H. A Universal Strategy for Tunable Persistent Luminescent Materials Via Radiative Energy Transfer. Angew. Chem. Int. Ed. 2022, 61, e202115748. [Google Scholar] [CrossRef] [PubMed]
- Jinzheng, C.; Lin, F.; Liang, G.; Huang, H.; Tian, Q.; Yang, Z.; Chi, Z. Asymmetric Diarylamine Guests for Host-Guest System with Stimulus-Responsive Room Temperature Phosphorescence. J. Mater. Chem. C 2023, 11, 6290–6295. [Google Scholar]
- Chanmungkalakul, S.; Wang, C.; Miao, R.; Chi, W.; Tan, D.; Qiao, Q.; Ang, E.C.X.; Tan, C.-H.; Fang, Y.; Xu, Z.; et al. A Descriptor for Accurate Predictions of Host Molecules Enabling Ultralong Room-Temperature Phosphorescence in Guest Emitters. Angew. Chem. Int. Ed. 2022, 61, e202200546. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Zhang, X.; Liu, J.; Shan, G.-G.; Zhang, H.; Qi, J.; Zhao, W.; Sung, H.H.Y.; Williams, I.D.; Lam, J.W.Y.; et al. New Wine in Old Bottles: Prolonging Room-Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angew. Chem. Int. Ed. 2020, 59, 9293–9298. [Google Scholar] [CrossRef] [PubMed]
- She, P.; Lu, J.; Qin, Y.; Li, F.; Wei, J.; Ma, Y.; Wang, W.; Liu, S.; Huang, W.; Zhao, Q. Controllable Photoactivated Organic Persistent Room-Temperature Phosphorescence for Information Encryption and Visual Temperature Detection. Cell Rep. Phys. Sci. 2021, 2, 100505. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Z.; Dai, X.; Sun, W.; Gong, Q.; Li, J.; Ge, Y. Color-Tunable Ultralong Organic Phosphorescence: Commercially Available Triphenylmethylamine for Uv-Light Response and Anticounterfeiting. Chem. Asian J. 2023, 18, e202300450. [Google Scholar] [CrossRef]
- Chen, H.; Yao, X.; Ma, X.; Tian, H. Amorphous, Efficient, Room-Temperature Phosphorescent Metal-Free Polymers and Their Applications as Encryption Ink. Adv. Opt. Mater. 2016, 4, 1397–1401. [Google Scholar] [CrossRef]
- Su, Y.; Phua, S.Z.F.; Li, Y.; Zhou, X.; Jana, D.; Liu, G.; Lim Wei, Q.; Ong Wee, K.; Yang, C.; Zhao, Y. Ultralong Room Temperature Phosphorescence from Amorphous Organic Materials toward Confidential Information Encryption and Decryption. Sci. Adv. 2018, 4, eaas9732. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Su, Y.; Zheng, Y.; Tang, W.; Yang, C.; Tang, H.; Qu, L.; Li, Y.; Zhao, Y. Simple Vanilla Derivatives for Long-Lived Room-Temperature Polymer Phosphorescence as Invisible Security Inks. Research 2021, 2021, 8096263. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Zheng, Y.; Li, J.-A.; Wu, S.; Zhang, H.; Huang, T.; Luo, S.; Liu, C.; Shi, G.; et al. Efficient and Color-Tunable Dual-Mode Afterglow from Large-Area and Flexible Polymer-Based Transparent Films for Anti-Counterfeiting and Information Encryption. Angew. Chem. Int. Ed. 2022, 61, e202201820. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, W.-W.; Chen, Y.; Qin, Y.-X.; Zhang, H.; Lu, Y.-L.; Xu, X. Tunable Second-Level Room-Temperature Phosphorescence of Solid Supramolecules between Acrylamide-Phenylpyridium Copolymers and Cucurbit[7]Uril. Angew. Chem. Int. Ed. 2022, 61, e202115265. [Google Scholar]
- Zhao, J.; Yan, G.; Wang, W.; Shao, S.; Yuan, B.; Li, Y.J.; Zhang, X.; Huang, C.Z.; Gao, P.F. Molecular Thermal Motion Modulated Room-Temperature Phosphorescence for Multilevel Encryption. Research 2022, 2022, 9782713. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Li, D.; Ushakova, E.V.; Maslov, V.G.; Zhou, D.; Jing, P.; Shen, D.; Qu, S.; Rogach, A.L. Multilevel Data Encryption Using Thermal-Treatment Controlled Room Temperature Phosphorescence of Carbon Dot/Polyvinylalcohol Composites. Adv. Sci. 2018, 5, 1800795. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Cao, L.; Guo, H.; Dong, W.; Li, L. Green Synthesis of Phosphorescent Carbon Dots for Anticounterfeiting and Information Encryption. Sensors 2022, 22, 2944. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, Z.; Li, Y.; Feng, Y.; Feng, W. Room-Temperature Phosphorescent Fluorine-Nitrogen Co-Doped Carbon Dots: Information Encryption and Anti-Counterfeiting. Carbon 2021, 181, 9–15. [Google Scholar] [CrossRef]
- Shi, W.; Wang, R.; Liu, J.; Peng, F.; Tian, R.; Lu, C. Time-Dependent Phosphorescence Color of Carbon Dots in Binary Salt Matrices through Activations by Structural Confinement and Defects for Dynamic Information Encryption. Angew. Chem. Int. Ed. 2023, 62, e202303063. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gao, P. Emerging Luminescent Materials for Information Encryption and Anti-Counterfeiting: Stimulus-Response AIEgens and Room-Temperature Phosphorescent Materials. Chemosensors 2023, 11, 489. https://doi.org/10.3390/chemosensors11090489
Li Y, Gao P. Emerging Luminescent Materials for Information Encryption and Anti-Counterfeiting: Stimulus-Response AIEgens and Room-Temperature Phosphorescent Materials. Chemosensors. 2023; 11(9):489. https://doi.org/10.3390/chemosensors11090489
Chicago/Turabian StyleLi, Yanjie, and Pengfei Gao. 2023. "Emerging Luminescent Materials for Information Encryption and Anti-Counterfeiting: Stimulus-Response AIEgens and Room-Temperature Phosphorescent Materials" Chemosensors 11, no. 9: 489. https://doi.org/10.3390/chemosensors11090489
APA StyleLi, Y., & Gao, P. (2023). Emerging Luminescent Materials for Information Encryption and Anti-Counterfeiting: Stimulus-Response AIEgens and Room-Temperature Phosphorescent Materials. Chemosensors, 11(9), 489. https://doi.org/10.3390/chemosensors11090489