Highly Sensitive and Selective MEMS Gas Sensor Based on WO3/Al2O3/Graphite for 2-Chloroethyl Ethyl Sulfide (2-CEES) Detection
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Chemical Reagent
2.2. Materials Synthesis
2.3. Characterization
2.4. Gas-Sensor Fabrication and Gas-Sensing System
3. Results and Discussion
3.1. Structure and Measurement Circuit of the Sensor
3.2. Structure and Morphology
3.3. Gas-Sensing Properties
3.4. Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.-Y.; Sun, Z.-B.; Zhang, M.; Zhao, S.-N.; Luo, P.; Gong, C.-H.; Liu, W.-X.; Zang, S.-Q. Cooperative catalysis between dual copper centers in a metal–organic framework for efficient detoxification of chemical warfare agent simulants. J. Am. Chem. Soc. 2022, 144, 21046–21055. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Kim, H.; Pandey, B.; James, T.D.; Yoon, J.; Anslyn, E.V. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: A legacy of the 21st century. Chem. Soc. Rev. 2023, 52, 663–704. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Song, J.; Si, Y.; Yu, J.; Ding, B. Superelastic and photothermal RGO/Zr-Doped TiO2 nanofibrous aerogels enable the rapid decomposition of chemical warfare agents. Nano Lett. 2022, 22, 4368–4375. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, K.; Ren, X.; Yan, W.; Zhu, C.; Zhao, Y.; Zeng, W.; Chen, Z.; Wang, S. A highly selective gas sensor based on the WO3/WS2 van der Waals heterojunction for the 2-chloroethyl ethyl sulfide (2-CEES) sensing application. J. Mater. Chem. C 2021, 9, 17496–17503. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Lubinska-Szczygeł, M.; Różańska, A.; Namieśnik, J.; Dymerski, T. PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Anal. Chim. Acta 2018, 1035, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Jiang, D.; Wang, Z.; Hua, L.; Li, H. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas. Talanta 2016, 153, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Jochum, T.; Rahal, L.; Suckert, R.J.; Popp, J.; Frosch, T. All-in-one: A versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening. Analyst 2016, 141, 2023–2029. [Google Scholar] [CrossRef]
- Viespe, C. Development of Pd/TiO2 Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H2 Gas Sensor. Nanomaterials 2020, 10, 760. [Google Scholar]
- Haghighi, E.; Zeinali, S. Formaldehyde detection using quartz crystal microbalance (QCM) nanosensor coated by nanoporous MIL-101(Cr) film. Microporous Mesoporous Mater. 2020, 300, 110065. [Google Scholar] [CrossRef]
- Lin, C.; Xian, X.; Qin, X.; Wang, D.; Tsow, F.; Forzani, E.; Tao, N. High Performance Colorimetric Carbon Monoxide Sensor for Continuous Personal Exposure Monitoring. ACS Sens. 2018, 3, 327–333. [Google Scholar] [CrossRef]
- Mirzaei, A.; Ansari, H.R.; Shahbaz, M.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Metal Oxide Semiconductor Nanostructure Gas Sensors with Different Morphologies. Chemosensors 2022, 10, 289. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Lu, Y.; Liu, Z.; Sui, C.; Wang, Y.; Yang, L.; Liu, F.; Sun, P.; Liu, F.; et al. Preparation of BiOI-Functionalized ZnO Nanorods for Ppb-Level NO2 Detection at Room Temperature. ACS Sens. 2022, 7, 3915–3922. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, L.; Cao, S.; Yang, J.; Yan, C.; Zhang, L.; Huang, Q.; Zhao, J. High-performance metal-oxide gas sensors based on hierarchical core–shell ZnFe2O4 microspheres for detecting 2-chloroethyl ethyl sulfide. Anal. Methods 2023, 15, 3084–3091. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Wang, T.; Li, B.; Gao, R.; Zhang, X.; Cheng, X.; Huo, L.; Major, Z.; Xu, Y. Crosslinked WO3 nanonet for rapid detection of sulfur mustard gas simulant: Mechanism insights and sensing application. Sens. Actuators B Chem. 2023, 385, 133704. [Google Scholar] [CrossRef]
- Li, B.; Ma, X.; Xin, Y.; Major, Z.; Zhang, X.; Wang, T.; Huo, L.; Cheng, X.; Xu, Y. In situ construction of hierarchical Fe2O3 nanotube arrays for real-time detection and degradation of 2-CEES gas. Sens. Actuators B Chem. 2023, 383, 133590. [Google Scholar] [CrossRef]
- Gui, Y.; Tian, K.; Liu, J.; Yang, L.; Zhang, H.; Wang, Y. Superior triethylamine detection at room temperature by {-112} faceted WO3 gas sensor. J. Hazard. Mater. 2019, 380, 120876. [Google Scholar] [CrossRef] [PubMed]
- Recum, P.; Hirsch, T. Graphene-based chemiresistive gas sensors. Nanoscale Adv. 2024. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cao, R.; Zhang, S.; Hou, P.; Han, R.; Shao, M.; Xu, X. Hierarchical flowerlike metal/metal oxide nanostructures derived from layered double hydroxides for catalysis and gas sensing. J. Mater. Chem. A 2017, 5, 23999–24010. [Google Scholar] [CrossRef]
- Sun, B.; Qin, F.; Jiang, L.; Gao, J.; Liu, Z.; Wang, J.; Zhang, Y.; Fan, J.; Kan, K.; Shi, K. Room-temperature gas sensors based on three-dimensional Co3O4/Al2O3@Ti3C2Tx MXene nanocomposite for highly sensitive NOx detection. Sens. Actuators B Chem. 2022, 368, 132206. [Google Scholar] [CrossRef]
- Meng, F.; Yuan, Z.; Meng, D. Chemical sensors for volatile organic compound detection. Chemosensors 2023, 11, 553. [Google Scholar] [CrossRef]
- Jo, Y.-M.; Jo, Y.K.; Lee, J.-H.; Jang, H.W.; Hwang, I.-S.; Yoo, D.J. MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities. Adv. Mater. 2023, 35, 2206842. [Google Scholar] [CrossRef] [PubMed]
- Patil, L.A.; Deo, V.V.; Shinde, M.D.; Bari, A.R.; Kaushik, M.P. Sensing of 2-chloroethyl ethyl sulfide (2-CEES)—A CWA simulant—Using pure and platinum doped nanostructured CdSnO3 thin films prepared from ultrasonic spray pyrolysis technique. Sens. Actuators B Chem. 2011, 160, 234–243. [Google Scholar] [CrossRef]
- Yoo, R.; Lee, D.; Cho, S.; Lee, W. Doping effect on the sensing properties of ZnO nanoparticles for detection of 2-chloroethyl ethylsulfide as a mustard simulant. Sens. Actuators B Chem. 2018, 254, 1242–1248. [Google Scholar] [CrossRef]
- Aliha, H.M.; Khodadadi, A.A.; Mortazavi, Y. The sensing behaviour of metal oxides (ZnO, CuO and Sm2O3) doped-SnO2 for detection of low concentrations of chlorinated volatile organic compounds. Sens. Actuators B Chem. 2013, 181, 637–643. [Google Scholar] [CrossRef]
- Patil, L.A.; Deo, V.V.; Shinde, M.D.; Bari, A.R.; Patil, D.M.; Kaushik, M.P. Improved 2-CEES sensing performance of spray pyrolized Ru-CdSnO3 nanostructured thin films. Sens. Actuators B Chem. 2014, 191, 130–136. [Google Scholar] [CrossRef]
- Horsfall, L.A.; Pugh, D.C.; Blackman, C.S.; Parkin, I.P. An array of WO3 and CTO heterojunction semiconducting metal oxide gas sensors used as a tool for explosive detection. J. Mater. Chem. A 2017, 5, 2172–2179. [Google Scholar] [CrossRef]
- Ou, L.-X.; Liu, M.-Y.; Zhu, L.-Y.; Zhang, D.W.; Lu, H.-L. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nano-Micro Lett. 2022, 14, 206. [Google Scholar] [CrossRef]
- Liu, Y.; Su, C.; Chen, X.; Li, B.; Jiang, W.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Zhu, Z.-g.; et al. Hierarchical WS2–WO3 Nanohybrids with P–N Heterojunctions for NO2 Detection. ACS Appl. Nano Mater. 2021, 4, 1626–1634. [Google Scholar]
- Yang, Z.; Li, B.; Han, Y.; Su, C.; Chen, X.; Zhou, Z.; Su, Y.; Hu, N.; Zhang, Y.; Zeng, M. Gas sensors based on two-dimensional transition metal dichalcogenide nanoheterojunctions. SciEngine 2019, 64, 3699–3716. [Google Scholar]
- Ren, Y.; Zou, Y.; Liu, Y.; Zhou, X.; Ma, J.; Zhao, D.; Wei, G.; Ai, Y.; Xi, S.; Deng, Y. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 2020, 19, 203–211. [Google Scholar] [CrossRef]
- Yuan, H.; Aljneibi, S.; Yuan, J.; Wang, Y.; Liu, H.; Fang, J.; Tang, C.; Yan, X.; Cai, H.; Gu, Y.; et al. ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing. Adv. Mater. 2019, 31, e1807161. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jung, Y.; Sung, S.-H.; Lee, G.; Kim, J.; Seong, J.; Shim, Y.-S.; Jun, S.C.; Jeon, S. High-performance gas sensor array for indoor air quality monitoring: The role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors. J. Mater. Chem. A 2021, 9, 1159–1167. [Google Scholar] [CrossRef]
- Chan, N.Y.; Zhao, M.; Huang, J.; Au, K.; Wong, M.H.; Yao, H.M.; Lu, W.; Chen, Y.; Ong, C.W.; Chan, H.L.; et al. Highly sensitive gas sensor by the LaAlO3/SrTiO3 heterostructure with Pd nanoparticle surface modulation. Adv. Mater. 2014, 26, 5962–5968. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Guo, Y.; Ren, H.; Gao, C.; Zhou, Y. Enhancing the NO2 gas sensing properties of rGO/SnO2 nanocomposite films by using microporous substrates. Sens. Actuators B Chem. 2017, 248, 560–570. [Google Scholar] [CrossRef]
Temperature | Response | Response Time | Recovery Time |
---|---|---|---|
260 °C | 58% | 17 s | 170 s |
300 °C | 70% | 12 s | 142 s |
340 °C | 69% | 5 s | 42 s |
440 °C | 65% | 4 s | 12 s |
Materials | Temperature | Response | Response Time | Recovery Time | Ref. |
---|---|---|---|---|---|
WO3/Al2O3/gra-phite | 340 °C | 69% # | 5 s | 42 s | This work |
Pt-CdSnO3 thin film | 300 °C | 33.46 * | 8 s | 125 s | [22] |
Al-doped ZnO NPs | 500 °C | 954 # | 2 s | 127 s | [23] |
Sm2O3 doped SnO2 NPs | 200 °C | 540 # | 50 s | 1200 s | [24] |
Ru-CdSnO3 thin film | 350 °C | 62.12 ^ | 5 s | 185 s | [25] |
crosslinked WO3 nanonets | 217 °C | 58 ^ | 1 s | 181 s | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Cheng, W.; Yan, W.; Wen, L.; Xia, C.; Sun, C.; Hu, D.; Zhao, Y.; Guo, X.; Zeng, W.; et al. Highly Sensitive and Selective MEMS Gas Sensor Based on WO3/Al2O3/Graphite for 2-Chloroethyl Ethyl Sulfide (2-CEES) Detection. Chemosensors 2024, 12, 5. https://doi.org/10.3390/chemosensors12010005
Yang L, Cheng W, Yan W, Wen L, Xia C, Sun C, Hu D, Zhao Y, Guo X, Zeng W, et al. Highly Sensitive and Selective MEMS Gas Sensor Based on WO3/Al2O3/Graphite for 2-Chloroethyl Ethyl Sulfide (2-CEES) Detection. Chemosensors. 2024; 12(1):5. https://doi.org/10.3390/chemosensors12010005
Chicago/Turabian StyleYang, Liangpan, Wangze Cheng, Wenlong Yan, Li Wen, Changyue Xia, Chuang Sun, Doumeng Hu, Yunong Zhao, Xiaohui Guo, Wei Zeng, and et al. 2024. "Highly Sensitive and Selective MEMS Gas Sensor Based on WO3/Al2O3/Graphite for 2-Chloroethyl Ethyl Sulfide (2-CEES) Detection" Chemosensors 12, no. 1: 5. https://doi.org/10.3390/chemosensors12010005
APA StyleYang, L., Cheng, W., Yan, W., Wen, L., Xia, C., Sun, C., Hu, D., Zhao, Y., Guo, X., Zeng, W., & Wang, S. (2024). Highly Sensitive and Selective MEMS Gas Sensor Based on WO3/Al2O3/Graphite for 2-Chloroethyl Ethyl Sulfide (2-CEES) Detection. Chemosensors, 12(1), 5. https://doi.org/10.3390/chemosensors12010005