Correlation of Plasma Temperature in Laser-Induced Breakdown Spectroscopy with the Hydrophobic Properties of Silicone Rubber Insulators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silicone Rubber Insulators (SIRs)
2.2. Accelerated Aging of SIRs
2.3. Hydrophobicity Measurements
2.4. Remote LIBS Measurements
2.5. Diffuse Reflectance and Shore Hardness Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papailiou, K.O.; Schmuck, F. Silicone Composite Insulators: Materials, Design, Applications; Power Systems; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-15319-8. [Google Scholar]
- Hackam, R. Outdoor HV Composite Polymeric Insulators. IEEE Trans. Dielect. Electr. Insul. 1999, 6, 557–585. [Google Scholar] [CrossRef]
- Schmuck, F.; Seifert, J.; Gutman, I.; Pigini, A. Assessment of the Condition of Overhead Line Composite Insulators. CIGRE: Paris, France, 2012. [Google Scholar]
- Kim, J.K.; Kim, I.-H. Characteristics of Surface Wettability and Hydrophobicity and Recovery Ability of EPDM Rubber and Silicone Rubber for Polymer Insulators. J. Appl. Polym. Sci. 2001, 79, 2251–2257. [Google Scholar] [CrossRef]
- Hergert, A.; Kindersberger, J.; Bar, C.; Barsch, R. Transfer of Hydrophobicity of Polymeric Insulating Materials for High Voltage Outdoor Application. IEEE Trans. Dielect. Electr. Insul. 2017, 24, 1057–1067. [Google Scholar] [CrossRef]
- Sorqvist, T.; Gubanski, S.M. Leakage Current and Flashover of Field-Aged Polymeric Insulators. IEEE Trans. Dielect. Electr. Insul. 1999, 6, 744–753. [Google Scholar] [CrossRef]
- Morra, M.; Occhiello, E.; Marola, R.; Garbassi, F.; Humphrey, P.; Johnson, D. On the Aging of Oxygen Plasma-Treated Polydimethylsiloxane Surfaces. J. Colloid Interface Sci. 1990, 137, 11–24. [Google Scholar] [CrossRef]
- Rowland, S.; Xiong, Y.; Robertson, J.; Hoffmann, S. Aging of Silicone Rubber Composite Insulators on 400 kV Transmission Lines. IEEE Trans. Dielect. Electr. Insul. 2007, 14, 130–136. [Google Scholar] [CrossRef]
- Rowland, S.M.; Robertson, J.; Xiong, Y.; Day, R.J. Electrical and Material Characterization of Field-Aged 400 kV Silicone Rubber Composite Insulators. IEEE Trans. Dielect. Electr. Insul. 2010, 17, 375–383. [Google Scholar] [CrossRef]
- Vas, J.V.; Thomas, M.J. Surface Degradation of Silicone Rubber Nanocomposites Due to DC Corona Discharge. IEEE Trans. Dielect. Electr. Insul. 2014, 21, 1175–1182. [Google Scholar] [CrossRef]
- Mavrikakis, N.; Siderakis, K.; Mikropoulos, P.N. Laboratory Investigation on Hydrophobicity and Tracking Performance of Field Aged Composite Insulators. In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014; pp. 1–6. [Google Scholar]
- Ye, W.; Jia, Z.; Wang, X.; Liu, S.; Wu, B. Investigation on Hydrophobicity Transfer Property of Silicone Rubber under Heavy Contamination. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 802–805. [Google Scholar]
- Mavrikakis, N.C.; Mikropoulos, P.N.; Siderakis, K. Evaluation of Field-Ageing Effects on Insulating Materials of Composite Suspension Insulators. IEEE Trans. Dielect. Electr. Insul. 2017, 24, 490–498. [Google Scholar] [CrossRef]
- Gubanski, S.M.; Vlastos, A.E. Wettability of Naturally Aged Silicon and EPDM Composite Insulators. IEEE Trans. Power Deliv. 1990, 5, 1527–1535. [Google Scholar] [CrossRef]
- STRI-Guide 1, 92/1; Hydrophobicity Classification Guide. 92/1. Swedish Transmission Research Institute: Ludvika, Sweden, 1992.
- IEC TS 62073:2016; Guidance on the Measurement of Hydrophobicity of Insulator Surfaces. IEC: Geneva, Switzerland, 2016.
- Zeng, Z.; Guo, P.; Zhang, R.; Zhao, Z.; Bao, J.; Wang, Q.; Xu, Z. Review of Aging Evaluation Methods for Silicone Rubber Composite Insulators. Polymers 2023, 15, 1141. [Google Scholar] [CrossRef] [PubMed]
- Kokkinaki, O.; Klini, A.; Polychronaki, M.; Mavrikakis, N.C.; Siderakis, K.G.; Koudoumas, E.; Pylarinos, D.; Thalassinakis, E.; Kalpouzos, K.; Anglos, D. Assessing the Type and Quality of High Voltage Composite Outdoor Insulators by Remote Laser-Induced Breakdown Spectroscopy Analysis: A Feasibility Study. Spectrochim. Acta Part B At. Spectrosc. 2020, 165, 105768. [Google Scholar] [CrossRef]
- Homma, T.; Kumada, A.; Fujii, T.; Homma, H.; Oishi, Y. Depth Profiling of Surface Degradation of Silicone Rubber Composite Insulators by Remote Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106206. [Google Scholar] [CrossRef]
- Thangabalan, B.; Sarathi, R.; Harid, N.; Griffiths, H. Impact of Gamma-Irradiated SiR-Al2O3 Nanocomposites and Degradation Diagnosis Using LIBS Method. IEEE Trans. Dielect. Electr. Insul. 2023, 30, 1760–1768. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, F.; Chen, S.; Wang, T.; Hong, X.; Wang, X.; Jia, Z. Characterization of Hygroscopic Insulator Contamination via Laser-Induced Breakdown Spectroscopy. IEEE Trans. Plasma Sci. 2021, 49, 1166–1172. [Google Scholar] [CrossRef]
- Wang, X.; Hong, X.; Chen, P.; Zhao, C.; Jia, Z.; Wang, L.; Zou, L. Surface Hardness Analysis of Aged Composite Insulators via Laser-Induced Plasma Spectra Characterization. IEEE Trans. Plasma Sci. 2019, 47, 387–394. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Fan, Y.; Zhou, J.; Li, Z.; Xiao, S.; Zhang, X.; Wu, G. Optical Imaging Technology Application in Transmission Line Insulator Monitoring: A Review. IEEE Trans. Dielect. Electr. Insul. 2024, 1–9. [Google Scholar] [CrossRef]
- Dimitropoulou, M.; Siderakis, K.; Pylarinos, D.; Thalassinakis, E.; Danikas, M.G. Insulation Coordination and Pollution Measurements in the Island of Crete. In Proceedings of the 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, Australia, 19–22 July 2015; pp. 951–954. [Google Scholar] [CrossRef]
- IEC 60587:2007; Electrical Insulating Materials Used under Severe Ambient Conditions—Test Methods for Evaluating Resistance to Tracking and Erosion. IEC: Geneva, Switzerland, 2007.
- Meyer, L.H.; Jayaram, S.H.; Cherney, E.A. Correlation of Damage, Dry Band Arcing Energy, and Temperature in Inclined Plane Testing of Silicone Rubber for Outdoor Insulation. IEEE Trans. Dielect. Electr. Insul. 2004, 11, 224–232. [Google Scholar] [CrossRef]
- Siozos, P.; Philippidis, A.; Anglos, D. Portable Laser-Induced Breakdown Spectroscopy/Diffuse Reflectance Hybrid Spectrometer for Analysis of Inorganic Pigments. Spectrochim. Acta Part B At. Spectrosc. 2017, 137, 93–100. [Google Scholar] [CrossRef]
- ASTM International. ASTM D2240 Test Method for Rubber Property Durometer Hardness; D2240; ASTM: West Conshohocken, PA, USA, 2005. [Google Scholar] [CrossRef]
- Zhou, Z.; Ge, Y.; Zhang, X.; Ye, Y.; Yang, M.; Sun, Z.; Liu, Y. Total Atmospheric Carbon Detection by LIBS with Multivariate Physicochemical Model Based on Transition and Collision Mechanism. Spectrochim. Acta Part B At. Spectrosc. 2024, 220, 107018. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Y.; Zhang, Q.; Ding, P. Correlation between Laser-Induced Plasma Temperature and CN Radical Molecule Emission during Tree Burning. Optik 2020, 224, 165670. [Google Scholar] [CrossRef]
- Aragón, C.; Aguilera, J.A. Characterization of Laser Induced Plasmas by Optical Emission Spectroscopy: A Review of Experiments and Methods. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 893–916. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y. NIST Atomic Spectra Database, NIST Standard Reference Database 78 1999. Available online: https://dx.doi.org/10.18434/T4W30F (accessed on 10 September 2024).
- Messaoud Aberkane, S.; Bendib, A.; Yahiaoui, K.; Boudjemai, S.; Abdelli-Messaci, S.; Kerdja, T.; Amara, S.E.; Harith, M.A. Correlation between Fe–V–C Alloys Surface Hardness and Plasma Temperature via LIBS Technique. Appl. Surf. Sci. 2014, 301, 225–229. [Google Scholar] [CrossRef]
- Sattar, H.; Ran, H.; Ding, W.; Imran, M.; Amir, M.; Ding, H. An Approach of Stand-off Measuring Hardness of Tungsten Heavy Alloys Using LIBS. Appl. Phys. B 2020, 126, 5. [Google Scholar] [CrossRef]
- Momcilovic, M.; Petrovic, J.; Ciganovic, J.; Cvijovic-Alagic, I.; Koldzic, F.; Zivkovic, S. Laser-Induced Plasma as a Method for the Metallic Materials Hardness Estimation: An Alternative Approach. Plasma Chem. Plasma Process 2020, 40, 499–510. [Google Scholar] [CrossRef]
- Popov, A.M.; Labutin, T.A.; Zorov, N.B. Application of Laser-Induced Breakdown Spectrometry for Analysis of Environmental and Industrial Materials. Mosc. Univ. Chem. Bull. 2009, 64, 366–377. [Google Scholar] [CrossRef]
- Galiová, M.; Kaiser, J.; Fortes, F.J.; Novotný, K.; Malina, R.; Prokeš, L.; Hrdlička, A.; Vaculovič, T.; Nývltová Fišáková, M.; Svoboda, J.; et al. Multielemental Analysis of Prehistoric Animal Teeth by Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Appl. Opt. 2010, 49, C191. [Google Scholar] [CrossRef]
- Cowpe, J.S.; Moorehead, R.D.; Moser, D.; Astin, J.S.; Karthikeyan, S.; Kilcoyne, S.H.; Crofts, G.; Pilkington, R.D. Hardness Determination of Bio-Ceramics Using Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 290–294. [Google Scholar] [CrossRef]
- Abdel-Salam, Z.A.; Galmed, A.H.; Tognoni, E.; Harith, M.A. Estimation of Calcified Tissues Hardness via Calcium and Magnesium Ionic to Atomic Line Intensity Ratio in Laser Induced Breakdown Spectra. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1343–1347. [Google Scholar] [CrossRef]
- Abdel-Salam, Z.A.; Nanjing, Z.; Anglos, D.; Harith, M.A. Effect of Experimental Conditions on Surface Hardness Measurements of Calcified Tissues via LIBS. Appl. Phys. B 2009, 94, 141–147. [Google Scholar] [CrossRef]
- Foster, J.C.; Akar, I.; Grocott, M.C.; Pearce, A.K.; Mathers, R.T.; O’Reilly, R.K. 100th Anniversary of Macromolecular Science Viewpoint: The Role of Hydrophobicity in Polymer Phenomena. ACS Macro Lett. 2020, 9, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Gardon, J.L. Relationship between cohesive energy densities of polymers and zisman’s critical surface tensions. J. Phys. Chem. 1963, 67, 1935–1936. [Google Scholar] [CrossRef]
- Képeš, E.; Saeidfirozeh, H.; Laitl, V.; Vrábel, J.; Kubelík, P.; Pořízka, P.; Ferus, M.; Kaiser, J. Interpreting Neural Networks Trained to Predict Plasma Temperature from Optical Emission Spectra. J. Anal. At. Spectrom. 2024, 39, 1160–1174. [Google Scholar] [CrossRef]
Number | Type/Location | Site Pollution Severity (SPS) a | Operation Time (y) |
---|---|---|---|
1 | LSR | N/A | 0 |
2 | LSR | N/A | 0 |
3 | HTV/Crete | Heavy | 21 |
4 | HTV/Crete | Medium | 17 |
5 | HTV/Crete | Heavy | 10 |
6 | HTV/Crete | Medium | 17 |
7 | HTV/Crete | Heavy | 10 |
8 | HTV/Crete | Heavy | 8 |
9 | HTV/Rhodes | Too heavy | 11 |
λ (nm) | Elower (cm−1) a | Eupper (cm−1) b | A (s−1) c | Lower–Upper Level Configuration (Term) | g d |
---|---|---|---|---|---|
263.12 | 15,394.4 | 53,387.3 | 1.06 × 108 | 3s2 3p2 (1S)–3s2 3p3d (1P0) | 3 |
298.85 | 6298.8 | 39,760.3 | 2.66 × 106 | 3s2 3p2 (1D3)–3s2 3p4s (3P0) | 3 |
390.58 | 15,394.4 | 40,991.9 | 1.33 × 107 | 3s2 3p2 (1S)–3s2 3p4s (1P0) | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkinaki, O.; Siozos, P.; Mavrikakis, N.; Siderakis, K.; Mouratis, K.; Koudoumas, E.; Liontos, I.; Hatzigiannakis, K.; Anglos, D. Correlation of Plasma Temperature in Laser-Induced Breakdown Spectroscopy with the Hydrophobic Properties of Silicone Rubber Insulators. Chemosensors 2024, 12, 204. https://doi.org/10.3390/chemosensors12100204
Kokkinaki O, Siozos P, Mavrikakis N, Siderakis K, Mouratis K, Koudoumas E, Liontos I, Hatzigiannakis K, Anglos D. Correlation of Plasma Temperature in Laser-Induced Breakdown Spectroscopy with the Hydrophobic Properties of Silicone Rubber Insulators. Chemosensors. 2024; 12(10):204. https://doi.org/10.3390/chemosensors12100204
Chicago/Turabian StyleKokkinaki, Olga, Panagiotis Siozos, Nikolaos Mavrikakis, Kiriakos Siderakis, Kyriakos Mouratis, Emmanuel Koudoumas, Ioannis Liontos, Kostas Hatzigiannakis, and Demetrios Anglos. 2024. "Correlation of Plasma Temperature in Laser-Induced Breakdown Spectroscopy with the Hydrophobic Properties of Silicone Rubber Insulators" Chemosensors 12, no. 10: 204. https://doi.org/10.3390/chemosensors12100204
APA StyleKokkinaki, O., Siozos, P., Mavrikakis, N., Siderakis, K., Mouratis, K., Koudoumas, E., Liontos, I., Hatzigiannakis, K., & Anglos, D. (2024). Correlation of Plasma Temperature in Laser-Induced Breakdown Spectroscopy with the Hydrophobic Properties of Silicone Rubber Insulators. Chemosensors, 12(10), 204. https://doi.org/10.3390/chemosensors12100204