Advancements and Applications of Single-Atom Nanozymes in Sensing Analysis
Abstract
:1. Introduction
2. Classification of SANs
2.1. Characteristic Structure
2.1.1. Carbon-Based Carrier Materials
2.1.2. Metal−Organic Frameworks and Their Derivatives
2.1.3. Metal Oxide Carriers
2.1.4. Metal Sulfide Carriers
2.1.5. Organic Polymer Carriers
2.2. Characteristic Performance
2.2.1. Peroxidase
2.2.2. Oxidase
2.2.3. Catalases
2.2.4. Superoxide-like Dismutase
2.2.5. Multi-Enzyme-Mimicking Activities
3. Application of SANs in Sensing Detection
3.1. Application of SANs in Biomolecules Detection
3.2. Application of SANs in Antioxidant Detection
3.3. Application of SANs in Ions Detection
3.4. Detection of Enzyme Activity and Its Inhibitors
3.5. Application of SANs in ELISA
4. Perspectives and Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carvalho, W.S.P.; Wei, M.L.; Ikpo, N.; Gao, Y.F.; Serpe, M.J. Polymer−based technologies for sensing applications. Anal. Chem. 2018, 90, 459–479. [Google Scholar] [CrossRef] [PubMed]
- Darwish, M.A.; Abd−Elaziem, W.; Elsheikh, A.; Zayed, A.A. Advancements in nanomaterials for nanosensors: A comprehensive review. Nanoscale Adv. 2024, 6, 4015–4046. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wang, E.K. Nanomaterials with enzyme−like characteristics (nanozymes): Next−generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Liu, Q.W.; Zhang, A.; Wang, R.H.; Zhang, Q.; Cui, D.X. A review on metal-and metal oxide-based nanozymes: Properties, mechanisms, and applications. Nano-Micro Lett. 2021, 13, 154. [Google Scholar] [CrossRef]
- Shen, X.M.; Wang, Z.Z.; Gao, X.J.J.; Gao, X.F. Reaction Mechanisms and Kinetics of Nanozymes: Insights from Theory and Computation. Adv. Mater. 2024, 36, 2211151. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Z.; Zhang, Y.; Ju, E.G.; Liu, Z.; Cao, F.F.; Chen, Z.W.; Ren, J.S.; Qu, X.G. Biomimetic nanoflowers by self−assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334. [Google Scholar] [CrossRef]
- Huang, L.; Chen, J.X.; Gan, L.F.; Wang, J.; Dong, S.J. Single−atom nanozymes. Sci. Adv. 2019, 5, eaav5490. [Google Scholar] [CrossRef]
- Jiao, L.; Yan, H.; Wu, Y.; Gu, W.; Zhu, C.; Du, D.; Lin, Y. When nanozymes meet single−atom catalysis. Angew. Chem. Int. Ed. 2020, 59, 2565–2576. [Google Scholar] [CrossRef]
- Qin, L.M.; Gan, J.; Niu, D.C.; Cao, Y.Q.; Duan, X.Z.; Qin, X.; Zhang, H.; Jiang, Z.; Jiang, Y.J.; Dai, S.; et al. Interfacial−confined coordination to single−atom nanotherapeutics. Nat. Commun. 2022, 13, 91. [Google Scholar] [CrossRef]
- Chen, Y.J.; Jiang, B.; Hao, H.G.; Li, H.J.; Qiu, C.Y.; Liang, X.; Qu, Q.Y.; Zhang, Z.D.; Gao, R.; Duan, D.M.; et al. Atomic−level regulation of cobalt single−atom nanozymes: Engineering high−efficiency catalase mimics. Angew. Chem. Int. Ed. 2023, 62, e202301879. [Google Scholar] [CrossRef]
- Mitchell, S.; Pérez−Ramírez, J. Single atom catalysis: A decade of stunning progress and the promise for a bright future. Nat. Commun. 2020, 11, 4302. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.H.; Ye, D.X.; Zhao, H.B.; Zhang, J.J. Perspectives for single−atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 2021, 93, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Z.; Wang, D.S. Understanding the structure−performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923. [Google Scholar] [CrossRef]
- Zheng, X.B.; Yang, J.R.; Xu, Z.F.; Wang, Q.S.; Wu, J.B.; Zhang, E.H.; Dou, S.X.; Sun, W.P.; Wang, D.S.; Li, Y.D. Ru−Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2022, 61, e202205946. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, Y.J.; Ji, S.F.; Tang, Y.; Chen, W.X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y.E.; Gong, Y.; et al. Iridium single−atom catalyst on nitrogen−doped carbon for formic acid oxidation synthesized using a general host−guest strategy. Nat. Chem. 2020, 12, 764–772. [Google Scholar] [CrossRef]
- Zhang, R.F.; Xue, B.; Tao, Y.H.; Zhao, H.Q.; Zhang, Z.X.; Wang, X.N.; Zhou, X.Y.; Jiang, B.; Yang, Z.L.; Yan, X.Y.; et al. Edge−site engineering of defective Fe−N4 nanozymes with boosted catalase−like performance for retinal vasculopathies. Adv. Mater. 2022, 34, 2205324. [Google Scholar] [CrossRef]
- Li, X.Q.; Lin, G.Y.; Zhou, L.J.; Prosser, O.; Malakooti, M.H.; Zhang, M.Q. Green synthesis of iron−doped graphene quantum dots: An efficient nanozyme for glucose sensing. Nanoscale Horiz. 2024, 9, 976–989. [Google Scholar] [CrossRef]
- Le, P.G.; Le, X.A.; Duong, H.S.; Kim, T.; Kim, M.I. Ultrahigh peroxidase−like catalytic performance of Cu−N4 and Cu−N4S active sites−containing reduced graphene oxide for sensitive electrochemical biosensing. Biosens. Bioelectron. 2024, 225, 116259. [Google Scholar] [CrossRef]
- Cheng, N.; Li, J.C.; Liu, D.; Lin, Y.H.; Du, D. Single−atom nanozyme based on nanoengineered Fe−N−C catalyst with superior peroxidase−like activity for ultrasensitive bioassays. Small 2019, 15, 1901485. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Zhang, Y.; Zeng, X.; Li, J.; Yang, M.; Huo, D.; Hou, C. A flexible self−supported electrochemical sensor Co−NC/PS@CC for real−time detection of cell−released H2O2. Anal. Chim. Acta 2024, 1307, 342627. [Google Scholar] [CrossRef]
- Sun, Q.J.; Xu, X.Y.; Liu, S.; Wu, X.Z.; Yin, C.H.; Wu, M.; Chen, Y.X.; Niu, N.; Chen, L.G.; Bai, F.Q. Mo single−atom nanozyme anchored to the 2D N−Doped carbon film: Catalytic mechanism, visual monitoring of choline, and evaluation of intracellular ROS generation. ACS Appl. Mater. Interfaces 2023, 15, 36124–36134. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Jia, P.; Xing, K.; Yao, L.; Chen, M.; Ding, L.; Huang, J.; Cheng, Y.; Xu, Z. Novel immunosensor based on metal single−atom nanozymes with enhanced oxidase−like activity for capsaicin analysis in spicy food. J. Agric. Food Chem. 2024, 72, 12832–12841. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cho, A.R.; Jia, G.R.; Cui, X.Q.; Shin, J.; Nam, I.; Noh, K.J.; Park, B.J.; Huang, R.; Han, J.W. Tuning local coordination environments of manganese single−atom nanozymes with multi−enzyme properties for selective colorimetric biosensing. Angew. Chem. Int. Ed. 2023, 62, e202300119. [Google Scholar] [CrossRef]
- Chang, Q.C.; Wu, J.B.; Zhang, R.T.; Wang, S.S.; Zhu, X.Y.; Xiang, H.D.; Wan, Y.L.; Cheng, Z.; Jin, M.J.; Li, X.K.; et al. Optimizing single−atom cerium nanozyme activity to function in a sequential catalytic system for colorimetric biosensing. Nano Today 2024, 56, 102236. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.J.; Wu, K.; Deng, A.P.; Li, J.G. Ultra−sensitive detection of 5−fluorouracil by flow injection chemiluminescence immunoassay based on Fenton−like effect of single atom Co nanozyme. Talanta 2023, 265, 124870. [Google Scholar] [CrossRef]
- Sun, L.P.; Yan, Y.; Chen, S.; Zhou, Z.J.; Tao, W.; Li, C.; Feng, Y.; Wang, F. Co−N−C single−atom nanozymes with oxidase−like activity for highly sensitive detection of biothiols. Anal. Bioanal. Chem. 2022, 414, 1857–1865. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, H.; Xu, W.Q.; Su, R.N.; Qin, Y.; Qiu, Y.W.; Zheng, L.R.; Gu, W.L.; Hu, L.Y.; Lv, F.; et al. Harmonizing Enzyme−like Cofactors to Boost Nanozyme Catalysis. Angew. Chem. Int. Ed. 2024, 63, e202319108. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, K.; Yu, S.S.; Jia, G.R.; Cheng, Z.L.; Zheng, L.R.; Wu, Q.; Bao, Q.L.; Wang, Q.Q.; Zhao, J.X.; et al. Revealing the intrinsic peroxidase−like catalytic mechanism of heterogeneous single−atom Co−MoS2. Nano−Micro Lett. 2019, 11, 102. [Google Scholar] [CrossRef]
- Han, J.P.; Gu, Y.H.; Yang, C.Y.; Meng, L.C.; Ding, R.M.; Wang, Y.F.; Shi, K.R.; Yao, H.Q. Single−atom nanozymes: Classification, regulation strategy, and safety concerns. J. Mat. Chem. B 2023, 11, 9840–9866. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, B.L.; Pan, X.T.; Wang, H.Y.; Wu, Q.Y.; Li, S.S.; Jiang, B.Y.; Liu, H.Y. Carbon−based nanozymes: Design, catalytic mechanism, and bioapplication. Coord. Chem. Rev. 2023, 475, 214896. [Google Scholar] [CrossRef]
- Li, P.F.; Sun, L.; Xue, S.S.; Qu, D.; An, L.; Wang, X.Y.; Sun, Z.C. Recent advances of carbon dots as new antimicrobial agents. SmartMat 2022, 3, 226–248. [Google Scholar] [CrossRef]
- Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X.Y.; Nie, G.H.; Liang, M.M. Carbon−based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583. [Google Scholar] [CrossRef]
- Wang, A.L.; Guan, C.; Shan, G.Y.; Chen, Y.W.; Wang, C.L.; Liu, Y.C. A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS−based determination of uric acid. Microchim. Acta 2019, 186, 644. [Google Scholar] [CrossRef]
- Shang, S.S.; Gao, S. Heteroatom−enhanced metal−free catalytic performance of carbocatalysts for organic transformations. ChemCatChem 2019, 11, 3728–3742. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, Y.J.; Xu, W.Q.; Su, R.N.; Qin, Y.; Jiao, L.; Wang, H.J.; Cui, X.W.; Zheng, L.R.; Wang, C.L.; et al. Photothermal−switched single−atom nanozyme specificity for pretreatment and sensing. Small 2023, 19, 2302929. [Google Scholar] [CrossRef]
- Wang, S.Z.; McGuirk, C.M.; d’Aquino, A.; Mason, J.A.; Mirkin, C.A. Metal−Organic Framework nanoparticles. Adv. Mater. 2018, 30, 1800202. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Wang, P.X.; Hao, H.G.; Hong, J.J.; Li, H.J.; Ji, S.F.; Li, A.; Gao, R.; Dong, J.C.; Han, X.D.; et al. Thermal Atomization of Platinum Nanoparticles into single atoms: An effective strategy for engineering high−performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.L.; Wang, H.; Wang, W.W.; Gao, L.Z.; Li, S.S.; Pan, X.T.; Wang, H.Y.; Yang, H.L.; Meng, X.Q.; Wu, Q.W.; et al. A single−atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 2019, 58, 4911–4916. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Lu, Y.; Liu, Y.X.; Liu, N.; Hu, J.C.; Wei, L.; Li, Z.Y.; Tian, X.R.; Gao, R.Y.; Yu, X.H.; et al. A general dual−metal nanocrystal dissociation strategy to generate robust high−temperature−stable alumina−supported single−atom catalysts. J. Am. Chem. Soc. 2023, 145, 15869–15878. [Google Scholar] [CrossRef]
- Wang, J.X.; Zhao, L.; Zou, Y.J.; Dai, J.; Zheng, Q.; Zou, X.Y.; Hu, L.F.; Hou, W.; Wang, R.Z.; Wang, K.Y.; et al. Engineering the coordination environment of Ir single atoms with surface titanium oxide amorphization for superior chlorine evolution reaction. J. Am. Chem. Soc. 2024, 146, 11152–11163. [Google Scholar] [CrossRef]
- Lou, Y.; Liu, J.Y. CO Oxidation on metal oxide supported single Pt atoms: The role of the support. Ind. Eng. Chem. Res. 2017, 56, 6916–6925. [Google Scholar] [CrossRef]
- Wu, J.N.; Wu, Y.L.; Lu, L.P.; Zhang, D.T.; Wang, X.Y. Single−atom Au catalyst loaded on CeO2: A novel single−atom nanozyme electrochemical H2O2 sensor. Talanta Open 2021, 4, 100075. [Google Scholar] [CrossRef]
- McFarland, E.W.; Metiu, H. Catalysis by Doped Oxides. Chem. Rev. 2013, 113, 4391–4427. [Google Scholar] [CrossRef]
- Yan, R.J.; Sun, S.; Yang, J.; Long, W.; Wang, J.Y.; Mu, X.Y.; Li, Q.F.; Hao, W.T.; Zhang, S.F.; Liu, H.L.; et al. Nanozyme based bandage with single−atom catalysis for brain trauma. ACS Nano 2019, 13, 11552–11560. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.J.; Zhang, B.; Ding, H.; Liu, D.; Xiang, J.Q.; Gao, X.J.J.; Chen, X.H.; Li, Z.J.; Yang, L.; Duan, H.X.; et al. TiO2 supported single Ag atoms nanozyme for elimination of SARS−CoV2. Nano Today 2021, 40, 101243. [Google Scholar] [CrossRef]
- Liu, G.L.; Robertson, A.W.; Li, M.M.J.; Kuo, W.C.H.; Darby, M.T.; Muhieddine, M.H.; Lin, Y.C.; Suenaga, K.; Stamatakis, M.; Warner, J.H.; et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chu, X.S.; Wang, F.; Dang, Y.Y.; Liu, X.Y.; Ma, T.H.; Li, J.Y.; Wang, C.Y. Pd single−atom decorated CdS nanocatalyst for highly efficient overall water splitting under simulated solar light. Appl. Catal. B−Environ. 2022, 304, 121000. [Google Scholar] [CrossRef]
- Huang, L.Z.; Wei, X.L.; Gao, E.L.; Zhang, C.B.; Hu, X.M.; Chen, Y.Q.; Liu, Z.Z.; Finck, N.; Lützenkirchen, J.; Dionysiou, D.D. 46. Appl. Catal. B−Environ. 2020, 268, 118459. [Google Scholar] [CrossRef]
- Li, H.D.; Zhao, G.Y.; Zhang, T.; Zhou, H.; Zhang, Z.C.; Wang, C.Y. Au nanoparticles on polydopamine nanotubes for enzyme−like nanomaterials with improved activities. ACS Appl. Nano Mater. 2022, 5, 17870–17878. [Google Scholar] [CrossRef]
- Ye, J.; Lv, W.B.; Li, C.S.; Liu, S.; Yang, X.; Zhang, J.W.; Wang, C.; Xu, J.T.; Jin, G.Q.; Li, B.; et al. Tumor response and NIR−II photonic thermal Co−enhanced catalytic therapy based on single−atom manganese nanozyme. Adv. Funct. Mater. 2022, 32, 2206157. [Google Scholar] [CrossRef]
- Zeng, W.W.; Yu, M.A.; Chen, T.; Liu, Y.Q.; Yi, Y.F.; Huang, C.Y.; Tang, J.; Li, H.Y.; Ou, M.T.; Wang, T.Q.; et al. Polypyrrole nanoenzymes as tumor microenvironment modulators to reprogram macrophage and potentiate immunotherapy. Adv. Sci. 2022, 9, 2201703. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.F.; Jiang, B.; Hao, H.G.; Chen, Y.J.; Dong, J.C.; Mao, Y.; Zhang, Z.D.; Gao, R.; Chen, W.X.; Zhang, R.F.; et al. Matching the kinetics of natural enzymes with a single−atom iron nanozyme. Nat. Catal. 2021, 4, 407–417. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, L.; Qu, G.X.; Leung, C.H.; Han, L.; Lu, L.H. Highly Active Single−Atom Nanozymes with High−Loading Iridium for Sensitive Detection of Pesticides. Anal. Chem. 2023, 95, 11960–11968. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.M.; Liang, C.H.; Zhang, X.D.; Huang, Y.M. High oxidase−mimic activity of Fe nanoparticles embedded in an N−rich porous carbon and their application for sensing of dopamine. Talanta 2018, 182, 476–483. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.N.; Chen, C.X.; Jiang, Y.Y.; Ni, P.J.; Song, N.N.; Hu, Y.; Xi, S.B.; Liang, M.M.; Lu, Y.Z. Regulating the N coordination environment of Co Single−atom nanozymes for highly efficient oxidase mimics. Nano Lett. 2023, 23, 1505–1513. [Google Scholar] [CrossRef]
- Glorieux, C.; Calderon, P.B. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 2017, 398, 1095–1108. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Zhang, R.F.; Yan, X.Y.; Fan, K.L. Superoxide dismutase nanozymes: An emerging star for anti−oxidation. J. Mat. Chem. B 2021, 9, 6939–6957. [Google Scholar] [CrossRef]
- Luo, S.; Gao, J.Q.; Yuan, H.W.; Yang, J.; Fan, Y.H.; Wang, L.; Ouyang, H.; Fu, Z.F. Mn single−atom nanozymes with superior loading capability and superb superoxide dismutase−like activity for bioassay. Anal. Chem. 2023, 95, 9366–9372. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Niu, R.; Deng, R.P.; Tang, Y.; Wang, C.X.; Wang, Y.H. A Cu−based single−atom nanozyme platform with multi−enzyme simulated activities for immunotherapy of prostate cancer by regulating cholesterol metabolism and triggering pyroptosis. Adv. Funct. Mater. 2024, 2405265. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Park, O.K.; Kim, J.; Kim, J.; Lee, D.; Paidi, V.K.; Jung, E.; Lee, H.S.; Lee, B.; et al. Geometric tuning of single−atom FeN4 sites via edge−generation enhances multi−enzymatic properties. Adv. Mater. 2023, 35, 2207666. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, B.; Zhu, J.J.; Xu, X.N.; Zhou, B.; Yang, Y. Single−atom nanozyme with asymmetric electron distribution for tumor catalytic therapy by disrupting tumor redox and energy metabolism homeostasis. Adv. Mater. 2023, 35, 2208512. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Zhao, P.; Liang, Y.; Chen, Y.Y.; Pu, J.Z.; Wu, J.Q.; Yang, Y.L.; Ma, Y.; Huang, Z.; Luo, H.B.; et al. Single−atom nanozymes Co−N−C as an electrochemical sensor for detection of bioactive molecules. Talanta 2023, 254, 124171. [Google Scholar] [CrossRef]
- Zhou, X.B.; Wang, M.K.; Chen, J.Y.; Xie, X.L.; Su, X.G. Peroxidase−like activity of Fe−N−C single−atom nanozyme based colorimetric detection of galactose. Anal. Chim. Acta 2020, 1128, 72–79. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhang, Y.; Wang, C.C.; Zeng, X.; Lei, J.C.; Hou, J.Z.; Huo, D.Q.; Hou, C.J. Co Single−atom nanozymes for the simultaneous electrochemical detection of uric acid and dopamine in biofluids. ACS Appl. Nano Mater. 2024, 7, 6273–6283. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, H.; Liu, X.K.; Yuan, T.W.; Wang, W.Y.; Zhao, C.; Zhao, Y.F.; Zhou, F.Y.; Wang, X.; Xue, Z.G.; et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343. [Google Scholar] [CrossRef]
- Jiao, L.; Xu, W.; Yan, H.; Wu, Y.; Liu, C.; Du, D.; Lin, Y.; Zhu, C. Fe−N−C Single−atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 2019, 91, 11994–11999. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, P.; Qiao, C.L.; Zhao, J.Y.; Liu, Y.Y.; Huang, Z.; Luo, H.B.; Hou, C.J.; Huo, D.Q. Fe Single−atom nanozymes for real−time dual monitoring of H2O2 released from living cells. ACS Appl. Nano Mater. 2023, 6, 9901–9909. [Google Scholar] [CrossRef]
- Pedone, D.; Moglianetti, M.; Lettieri, M.; Marrazza, G.; Pompa, P.P. Platinum nanozyme−enabled colorimetric determination of total antioxidant level in saliva. Anal. Chem. 2020, 92, 8660–8664. [Google Scholar] [CrossRef]
- Tao, C.Y.; Jiang, Y.Y.; Chu, S.S.; Miao, Y.R.; Zhang, J.Q.; Lu, Y.Z.; Niu, L. Natural enzyme−inspired design of the single−atom Cu nanozyme as dual−enzyme mimics for distinguishing total antioxidant capacity and the ascorbic acid level. Anal. Chem. 2024, 96, 3107–3115. [Google Scholar] [CrossRef]
- Chen, D.; Xia, Z.M.; Guo, Z.X.; Gou, W.Y.; Zhao, J.L.; Zhou, X.M.; Tan, X.H.; Li, W.B.; Zhao, S.J.; Tian, Z.M.; et al. Bioinspired porous three−coordinated single−atom Fe nanozyme with oxidase−like activity for tumor visual identification via glutathione. Nat. Commun. 2023, 14, 7127. [Google Scholar] [CrossRef]
- Liu, X.L.; Wu, F.F.; Zheng, X.Z.; Liu, H.R.; Ren, F.L.; Sun, J.P.; Ding, H.W.; Yang, R.; Jin, L. Facile Synthesis of High−Loading Cu Single−Atom Nanozyme for Total Antioxidant Capacity Sensing. ACS Appl. Nano Mater. 2023, 6, 10303–10311. [Google Scholar] [CrossRef]
- Xi, H.Y.; Gu, H.F.; Han, Y.R.; You, T.T.; Wu, P.F.; Liu, Q.Q.; Zheng, L.R.; Liu, S.H.; Fu, Q.; Chen, W.X.; et al. Peroxidase−like single Fe atoms anchored on Ti3C2Tx MXene as surface enhanced Raman scattering substrate for the simultaneous discrimination of multiple antioxidants. Nano Res. 2023, 16, 10053–10060. [Google Scholar] [CrossRef]
- Wang, F.Z.; Wang, Y.Y.; Wang, H.X.; Zhao, G.H.; Li, J.H.; Wang, Y.G. Advances in the application of single−atom nanozymes for heavy metal ion detection, tumor therapy and antimicrobial therapy. Microchem J. 2023, 191, 108817. [Google Scholar] [CrossRef]
- Mao, Y.; Gao, S.J.; Yao, L.L.; Wang, L.; Qu, H.; Wu, Y.; Chen, Y.; Zheng, L. Single−atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). J. Hazard. Mater. 2021, 408, 124898. [Google Scholar] [CrossRef]
- Li, R.; He, X.T.; Javed, R.; Cai, J.; Cao, H.M.; Liu, X.; Chen, Q.; Ye, D.X.; Zhao, H.B. Switching on−off−on colorimetric sensor based on Fe−N/S−C single−atom nanozyme for ultrasensitive and multimodal detection of Hg2+. Sci. Total Environ. 2022, 834, 155428. [Google Scholar] [CrossRef]
- Li, R.M.; Jiao, L.; Jia, X.K.; Yan, L.J.; Li, X.T.; Yan, D.B.; Zhai, Y.L.; Zhu, C.Z.; Lu, X.Q. Bioinspired FeN5 sites with enhanced peroxidase−like activity enable colorimetric sensing of uranyl ions in seawater. Anal. Chem. 2024, 96, 3124–3130. [Google Scholar] [CrossRef]
- Lang, Z.Y.; Li, R.; Javed, R.; Zhao, H.B.; Cao, H.M.; Ye, D.X. Smartphone−based colorimetric sensor using Fe−N−P−C single−atom nanozymes with boosted activity for sensitive detection of S2−. Microchem J. 2024, 198, 110169. [Google Scholar] [CrossRef]
- Mao, Y.W.; Zhang, J.; Zhang, R.; Li, J.Q.; Wang, A.J.; Zhou, X.C.; Feng, J.J. N−doped carbon nanotubes supported Fe−Mn dual−single−atoms nanozyme with synergistically enhanced peroxidase activity for sensitive colorimetric detection of acetylcholinesterase and its inhibitor. Anal. Chem. 2023, 95, 8640–8648. [Google Scholar] [CrossRef]
- Chen, T.T.; Zhou, D.D.; Hou, S.H.; Li, Y.; Liu, Y.; Zhang, M.L.; Zhang, G.B.; Xu, H. Designing hierarchically porous single atoms of Fe−N5 catalytic sites with high oxidase−like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 2022, 94, 15270–15279. [Google Scholar] [CrossRef]
- Niu, X.H.; Shi, Q.R.; Zhu, W.L.; Liu, D.; Tian, H.Y.; Fu, S.F.; Cheng, N.; Li, S.Q.; Smith, J.N.; Du, D.; et al. Unprecedented peroxidase−mimicking activity of single−atom nanozyme with atomically dispersed Fe−Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495. [Google Scholar] [CrossRef]
- Sun, W.Y.; Wang, N.; Zhou, X.B.; Sheng, Y.X.; Su, X.G. Co, N co−doped porous carbon−based nanozyme as an oxidase mimic for fluorescence and colorimetric biosensing of butyrylcholinesterase activity. Microchim. Acta 2022, 189, 363. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.M.; Li, S.Q.; Liu, Y.; Zhang, X.D.; Tang, Y.; Chai, H.X.; Huang, Y.M. Size−controllable Fe−N/C single−atom nanozyme with exceptional oxidase−like activity for sensitive detection of alkaline phosphatase. Sens. Actuator B−Chem. 2020, 305, 127511. [Google Scholar] [CrossRef]
- Zhou, X.B.; Wang, M.J.; Wang, M.K.; Su, X.G. Nanozyme−based detection of alkaline phosphatase. ACS Appl. Nano Mater. 2021, 4, 7888–7896. [Google Scholar] [CrossRef]
- Jiao, L.; Yan, H.Y.; Xu, W.Q.; Wu, Y.; Gu, W.L.; Li, H.; Du, D.; Lin, Y.H.; Zhu, C.Z. Self−assembly of all−inclusive allochroic nanoparticles for the improved ELISA. Anal. Chem. 2019, 91, 8461–8465. [Google Scholar] [CrossRef]
- Zhao, Q.; Lu, D.; Zhang, G.Y.; Zhang, D.; Shi, X.B. Recent improvements in enzyme−linked immunosorbent assays based on nanomaterials. Talanta 2021, 223, 121722. [Google Scholar] [CrossRef]
- Lyu, Z.Y.; Ding, S.C.; Zhang, N.; Zhou, Y.; Cheng, N.; Wang, M.Y.; Xu, M.J.; Feng, Z.X.; Niu, X.H.; Cheng, Y.; et al. Single−atom nanozymes linked immunosorbent assay for sensitive detection of Aβ 1−40: A biomarker of Alzheimer’s Disease. Research 2020, 2020, 4724505. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, X.R.; Huang, Y.J.; Zhang, Z.W.; Li, P.W.; Yu, L. Fe−N−C single−atom nanozyme−linked immunosorbent assay for quantitative detection of aflatoxin B1. J. Food Compos. Anal. 2024, 125, 105795. [Google Scholar] [CrossRef]
SAN | Carrier | Enzyme-like | Target | Linear Range (μM) | LOD (μM) | Ref |
---|---|---|---|---|---|---|
FeN/GQDs | GQDs | POD | H2O2 glucose | 5–100 1–300 | 0.78 0.36 | [17] |
Cu-NS-rGO | rGO | POD | Ch Ach | 0.02–0.2 0.02–0.1 | 2.5 × 10−3 5.0 × 10−3 | [18] |
CNT/FeNC | CNT | POD | H2O2 glucose AA | 0.1–100 100–1.0 × 104 0.1–10 | 0.03 20 0.03 | [19] |
Co-NC/PS@CC | CC | POD | H2O2 | 1–17,328 | 0.1687 | [20] |
Mo-SAN | PC | POD | Ch | 0.5–35 | 0.12 | [21] |
Fe/NC | ZIF-8 | POD | CAP | 0.01–1000 ng mL−1 | 0.046 ng mL−1 | [22] |
MnSA-N3-C | ZIF-8 | POD OXD GSHOx | GA CA NOR | 1.0–70 0.2–15 0.4–18 | 0.1 0.07 0.05 | [23] |
CeN4-SAzyme | ZIF-8 | POD | H2O2 D-glucos ACh OPs | 100–1.0 × 104 30–2.0 × 103 10–8.0 × 103 1–1000 ng mL−1 | 77 24 5.3 0.56 ng mL−1 | [24] |
Co SANs | ZIF-8 | POD | 5-fu | 0.001–1000 ng mL−1 | 2.9 × 10−3 | [25] |
Co-N-C | ZIF-67 | OXD | GSH Cys | 0.1–40 0.1–20 | 0.07 0.06 | [26] |
UiO-67-Fe | UiO-67 | POD | chlorpyrifos | 1.67–333.33 ng mL−1 | 0.21 ng mL−1 | [27] |
SA Co-MoS2 | MoS2 | POD | H2O2 | 0.05–17,241 | 0.01 | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, S.; Zhang, Z. Advancements and Applications of Single-Atom Nanozymes in Sensing Analysis. Chemosensors 2024, 12, 209. https://doi.org/10.3390/chemosensors12100209
Zhang H, Zhang S, Zhang Z. Advancements and Applications of Single-Atom Nanozymes in Sensing Analysis. Chemosensors. 2024; 12(10):209. https://doi.org/10.3390/chemosensors12100209
Chicago/Turabian StyleZhang, Huiyun, Shouting Zhang, and Zhicheng Zhang. 2024. "Advancements and Applications of Single-Atom Nanozymes in Sensing Analysis" Chemosensors 12, no. 10: 209. https://doi.org/10.3390/chemosensors12100209
APA StyleZhang, H., Zhang, S., & Zhang, Z. (2024). Advancements and Applications of Single-Atom Nanozymes in Sensing Analysis. Chemosensors, 12(10), 209. https://doi.org/10.3390/chemosensors12100209