A Novel Mechanism Based on Oxygen Vacancies to Describe Isobutylene and Ammonia Sensing of p-Type Cr2O3 and Ti-Doped Cr2O3 Thin Films
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of Cr2O3 and CTO Thin Films
2.2. Characterization of the Samples
2.3. Sensor Fabrication and Gas-Sensing Measurements
3. Results and Discussion
3.1. Material Characterization
3.2. Gas Response
3.3. Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayyala, S.K.; Covington, J.A. Nickel-Oxide Based Thick-Film Gas Sensors for Volatile Organic Compound Detection. Chemosensors 2021, 9, 247. [Google Scholar] [CrossRef]
- Agbroko, S.O.; Covington, J. A novel, low-cost, portable PID sensor for the detection of volatile organic compounds. Sens. Actuators B 2018, 275, 10–15. [Google Scholar] [CrossRef]
- Ding, C.; Ma, Y.; Lai, X.; Yang, Q.; Xue, P.; Hu, F.; Geng, W. Ordered Large-Pore Mesoporous Cr2O3 with Ultrathin Framework for Formaldehyde Sensing. ACS Appl. Mater. Interfaces 2017, 9, 18170–18177. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Huang, Y.; Jian, J. Plate-like Cr2O3 for highly selective sensing of nitric oxide. Sens. Actuators B 2015, 206, 107–110. [Google Scholar] [CrossRef]
- Zhang, M.; Sui, N.; Wang, R.; Zhang, T. The effect of shell thickness on gas sensing properties of core-shell fibers. Sens. Actuators B 2021, 332, 129456. [Google Scholar] [CrossRef]
- Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B Chem. 2005, 108, 2–14. [Google Scholar] [CrossRef]
- Moumen, A.; Kumarage, G.C.W.; Comini, E. P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications. Sensors 2022, 22, 1359. [Google Scholar] [CrossRef]
- Song, B.-Y.; Liu, L.-H.; Yang, M.; Zhang, X.-F.; Deng, Z.-P.; Xu, Y.-M.; Huo, L.-H.; Gao, S. Biotemplate-directed synthesis of Cr2O3 mesoporous monotubes for enhanced sensing to trace H2S gas. Sens. Actuators B 2022, 369, 132294. [Google Scholar] [CrossRef]
- Liu, B.; Han, W.; Li, X.; Li, L.; Tang, H.; Lu, C.; Li, Y.; Li, X. Quasi metal organic framework with highly concentrated Cr2O3 molecular clusters as the efficient catalyst for dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Appl. Catal. B 2019, 257, 117939. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Y.; Zhong, J.; Lu, Z.; Wang, G.; Sun, M.; Jiang, Y.; Zou, P.; Wang, X.; Zhao, Q.; et al. Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone. Chem. Eng. J. 2020, 398, 125664. [Google Scholar] [CrossRef]
- Atkinson, A.; Levy, M.R.; Roche, S.; Rudkin, R.A. Defect properties of Ti-doped Cr2O3. Solid State Ion. 2006, 177, 1767–1770. [Google Scholar] [CrossRef]
- Henshaw, G.S.; Dawson, D.H.; Williams, D.E. Selectivity and composition dependence of response of gas-sensitive resistors. Part 2.—Hydrogen sulfide response of Cr2−xTixO3+y. J. Mater. Chem. 1995, 5, 1791–1800. [Google Scholar] [CrossRef]
- Blacklocks, A.N.; Atkinson, A.; Packer, R.J.; Savin, S.L.P.; Chadwick, A.V. An XAS study of the defect structure of Ti-doped α- Cr2O3. Solid State Ion. 2006, 177, 2939–2944. [Google Scholar] [CrossRef]
- Shaw, G.A.; Pratt, K.F.E.; Parkin, I.P.; Williams, D.E. Gas sensing properties of thin film (≤3 μm) Cr2−xTixO3 (CTO) prepared by atmospheric pressure chemical vapour deposition (APCVD), compared with that prepared by thick film screen-printing. Sens. Actuators B 2005, 104, 151–162. [Google Scholar] [CrossRef]
- Du, J.; Wu, Y.; Choy, K.-L. Controlled synthesis of gas sensing Cr2−xTixO3 films by electrostatic spray assisted vapour deposition and their structural characterisation. Thin Solid Films 2006, 497, 42–47. [Google Scholar] [CrossRef]
- Du, J.; Wu, Y.; Choy, K.-L.; Shipway, P.H. Structure, properties and gas sensing behavior of Cr2−xTixO3 films fabricated by electrostatic spray assisted vapour deposition. Thin Solid Films 2010, 519, 1293–1299. [Google Scholar] [CrossRef]
- Conde-Gallardo, A.; Cruz-Orea, A.; Zelaya-Angel, O.; Bartolo-Pèrez, P. Electrical and optical properties of Cr2−xTixO3 thin films. J. Phys. D Appl. Phys. 2008, 41, 205407. [Google Scholar] [CrossRef]
- Vallejos, S.; Di Maggio, F.; Shujah, T.; Blackman, C. Chemical Vapour Deposition of Gas Sensitive Metal Oxides. Chemosensors 2016, 4, 4. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Shah, S.S.; Basha, S.I.; Hakeem, A.S.; Aziz, M.A. Recent Advances in Processing and Applications of Heterobimetallic Oxide Thin Films by Aerosol-Assisted Chemical Vapor Deposition. Chem. Rec. 2022, 22, e202100278. [Google Scholar] [CrossRef]
- Srirattanapibul, S.; Nakarungsee, P.; Issro, C.; Tang, I.M.; Thongmee, S. Enhanced room temperature NH3 sensing of rGO/Co3O4 nanocomposites. Mater. Chem. Phys. 2021, 272, 125033. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Natarajamani, G.S.; Kannan, V.P.; Madanagurusamy, S. Synergistically enhanced NH3 gas sensing of graphene oxide-decorated Nano-ZnO thin films. Mater. Chem. Phys. 2024, 316, 129036. [Google Scholar] [CrossRef]
- Li, D.; Han, D.; Chen, Y.; Hong, Y.; Duan, Q.; Wang, H.; He, X.; Zhao, L.; Wang, W.; Sang, S. GaN/rGO nanocomposite gas sensor for enhanced NH3 sensing performances at room temperature. Sens. Actuators B 2024, 403, 135209. [Google Scholar] [CrossRef]
- Song, B.-Y.; Zhang, X.-F.; Huang, J.; Cheng, X.-L.; Deng, Z.-P.; Xu, Y.-M.; Huo, L.-H.; Gao, S. Porous Cr2O3 Architecture Assembled by Nano-Sized Cylinders/Ellipsoids for Enhanced Sensing to Trace H2S Gas. ACS Appl. Mater. Interfaces 2022, 14, 22302–22312. [Google Scholar] [CrossRef]
- Dutta, S.; Pandey, A.; Leeladhar; Jain, K.K. Growth and characterization of ultrathin TiO2-Cr2O3 nanocomposite films. J. Alloys Compd. 2017, 696, 376–381. [Google Scholar] [CrossRef]
- Baraskar, P.; Chouhan, R.; Agrawal, A.; Choudhary, R.J.; Sen, P. Weak ferromagnetism at room temperature in Ti incorporated Cr2O3 thin film. Phys. B 2019, 571, 36–40. [Google Scholar] [CrossRef]
- Williams, D.E. Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B Chem. 1999, 57, 1–16. [Google Scholar] [CrossRef]
- Blackman, C. Do We Need “Ionosorbed” Oxygen Species? (Or, “A Surface Conductivity Model of Gas Sensitivity in Metal Oxides Based on Variable Surface Oxygen Vacancy Concentration”). ACS Sens. 2021, 6, 3509–3516. [Google Scholar] [CrossRef]
- Kucharski, S.; Ferrer, P.; Venturini, F.; Held, G.; Walton, A.S.; Byrne, C.; Covington, J.A.; Ayyala, S.K.; Beale, A.M.; Blackman, C. Direct in situ spectroscopic evidence of the crucial role played by surface oxygen vacancies in the O2-sensing mechanism of SnO2. Chem. Sci. 2022, 13, 6089–6097. [Google Scholar] [CrossRef]
- Cox, D.F.; Fryberger, T.B.; Semancik, S. Oxygen vacancies and defect electronic states on the SnO2 (110)-1 × 1 surface. Phys. Rev. B 1988, 38, 2072–2083. [Google Scholar] [CrossRef]
- Gunkel, F.; Christensen, D.V.; Chen, Y.Z.; Pryds, N. Oxygen vacancies: The (in)visible friend of oxide electronics. Appl. Phys. Lett. 2020, 116, 120505. [Google Scholar] [CrossRef]
Samples | Annealing Temperatures (°C) | Annealing Times (h) | Scherrer Size (nm) |
---|---|---|---|
Cr2O3-1 | 500 | 24 | 26 |
Cr2O3-2 | 600 | 24 | 31 |
Cr2O3-3 | 700 | 24 | 30 |
CTO-1 | 600 | 6 | 25 |
CTO-2 | 600 | 30 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Tsang, J.-H.; Blackman, C.; Shen, Y.; Liang, J.; Covington, J.A.; Saffell, J.; Danesh, E. A Novel Mechanism Based on Oxygen Vacancies to Describe Isobutylene and Ammonia Sensing of p-Type Cr2O3 and Ti-Doped Cr2O3 Thin Films. Chemosensors 2024, 12, 218. https://doi.org/10.3390/chemosensors12100218
Zhou P, Tsang J-H, Blackman C, Shen Y, Liang J, Covington JA, Saffell J, Danesh E. A Novel Mechanism Based on Oxygen Vacancies to Describe Isobutylene and Ammonia Sensing of p-Type Cr2O3 and Ti-Doped Cr2O3 Thin Films. Chemosensors. 2024; 12(10):218. https://doi.org/10.3390/chemosensors12100218
Chicago/Turabian StyleZhou, Pengfei, Jone-Him Tsang, Chris Blackman, Yanbai Shen, Jinsheng Liang, James A. Covington, John Saffell, and Ehsan Danesh. 2024. "A Novel Mechanism Based on Oxygen Vacancies to Describe Isobutylene and Ammonia Sensing of p-Type Cr2O3 and Ti-Doped Cr2O3 Thin Films" Chemosensors 12, no. 10: 218. https://doi.org/10.3390/chemosensors12100218
APA StyleZhou, P., Tsang, J. -H., Blackman, C., Shen, Y., Liang, J., Covington, J. A., Saffell, J., & Danesh, E. (2024). A Novel Mechanism Based on Oxygen Vacancies to Describe Isobutylene and Ammonia Sensing of p-Type Cr2O3 and Ti-Doped Cr2O3 Thin Films. Chemosensors, 12(10), 218. https://doi.org/10.3390/chemosensors12100218