Fast Determination and Source Apportionment of Eight Polycyclic Aromatic Hydrocarbons in PM10 Using the Chemometric-Assisted HPLC-DAD Method
Abstract
:1. Introduction
2. Experiment
2.1. Reagents and Chemicals
2.2. Instrumentation
2.3. Standard Solutions
2.4. Sampling Procedure
2.5. PAH Extraction
2.6. Sample Sets
3. Method and Software
4. Results and Discussions
4.1. Optimization of HPLC Conditions
4.2. Model Validation
4.3. Quantification of PAHs in PM10 Samples
4.4. Source Apportionment of PM10
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.Z. Atmospheric PAH Contamination in the Western Watershed of Bohai Sea, China. Ph.D. Thesis, Peking University, Beijing, China, 2008. [Google Scholar]
- Wittaya, T.; Pavidarin, K.; Somporn, C. Impact of atmospheric conditions and source identification of gaseous polycyclic aromatichydrocarbons (PAHs) during a smoke haze period in upper southeast Asia. Toxics 2023, 11, 990. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Zhang, X.; Bai, P.C.; Zhang, L.L.; Huang, S.J.; Pointing, S.B.; Nagao, S.; Chen, B.; Toriba, A.; et al. Abundance, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in PM2.5 in the urban atmosphere of Singapore. Atmosphere 2022, 13, 1420. [Google Scholar] [CrossRef]
- Liao, K.Z.; Yu, J.Z. Abundance and sources of benzo[a] pyrene and other PAHs in ambient air in Hong Kong: A review of 20-year measurements (1997–2016). Chemosphere 2020, 259, 127518. [Google Scholar] [CrossRef] [PubMed]
- Famiyeh, L.; Chen, K.; Xu, J.S.; Sun, Y.; Guo, Q.j.; Wang, C.J.; Lv, J.G.; Tang, Y.T.; Yu, H.; Snape, C.; et al. A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. Sci. Total Environ. 2021, 789, 147741. [Google Scholar] [CrossRef]
- Wu, Y.F.; Zhang, H.Q.; Zhang, H.; Zeng, T.; Qiao, N.; Shi, Y.; Zhang, N.; Luo, W.J.; Lu, S. Risks and sources of atmospheric particulate-bound polycyclic aromatic hydrocarbons (AP-PAHs) in seven regions of China: A review. Urban Clim. 2024, 57, 102108. [Google Scholar] [CrossRef]
- Bozek, F.; Huzlik, J.; Pawelczyk, A.; Hoza, I.; Naplavova, M.; Jedlicka, J. Polycyclic aromatic hydrocarbon adsorption on selected solid particulate matter fractions. Atmos. Environ. 2016, 126, 128–135. [Google Scholar] [CrossRef]
- Abbas, I.; Badran, G.; Verdin, A.; Ledoux, F.; Roumié, M.; Courcot, D.; Garçon, G. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: Sources, analysis and toxicity. Environ. Chem. Lett. 2018, 16, 439–475. [Google Scholar] [CrossRef]
- Krzyszczak, A.; Czech, B. Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. Sci. Total Environ. 2021, 788, 147738. [Google Scholar] [CrossRef]
- Vosough, M. Current challenges in second-order calibration of hyphenated chromatographic data for analysis of highly complex samples. J. Chemom. 2018, 32, e2976. [Google Scholar] [CrossRef]
- Dogra, R.; Kumar, M.; Kumar, A.; Roverso, M.; Bogialli, S.; Pastore, P.; Mandal, U.K. Derivatization, an applicable asset for conventional HPLC systems without MS detection in food and miscellaneous analysis. Crit. Rev. Anal. Chem. 2023, 53, 1807–1827. [Google Scholar] [CrossRef]
- Santanatoglia, A.; Angeloni, S.; Fiorito, M.; Fioretti, L.; Ricciutelli, M.; Sagratini, G.; Vittori, S.; Caprioli, G. Development of new analytical methods for the quantification of organic acids, chlorogenic acids and caffeine in espresso coffee by using solid-phase extraction (SPE) and high-performance liquid chromatography-diode array detector (HPLC-DAD). J. Food Compos. Anal. 2024, 125, 105732. [Google Scholar] [CrossRef]
- Lovato, G.; Ciriolo, L.; Perrucci, M.; Federici, L.; Ippoliti, R.; Iacobelli, S.; Capone, E.; Locatelli, M.; Sala, G. HPLC-DAD validated method for DM4 and its metabolite S-Me-DM4 quantification in biological matrix for clinical and pharmaceutical applications. J. Pharm. Biomed. Anal. 2023, 235, 115642. [Google Scholar] [CrossRef] [PubMed]
- Świt, P.; Orzeł, J.; Maślanka, S. Monitoring of PAHs in simulated natural and artificial fires by HPLC-DAD-FLD with the application of Multi-Component Integrated calibration method to improve quality of analytical results. Measurement 2022, 196, 111242. [Google Scholar] [CrossRef]
- Escandar, G.M.; de la Peña, A.M. Multi-way calibration for the quantification of polycyclic aromatic hydrocarbons in samples of environmental impact. Microchem. J. 2021, 164, 106016. [Google Scholar] [CrossRef]
- Qing, X.D.; Wu, H.L.; Zhang, X.H.; Li, Y.; Gu, H.W.; Yu, R.Q. A novel fourth-order calibration method based on alternating quinquelinear decomposition algorithm for processing high performance liquid chromatography-diode array detection-kinetic-pH data of naptalam hydrolysis. Anal. Chim. Acta 2015, 861, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Qing, X.D.; Wu, H.L.; Zhang, X.H.; Li, Y.; Gu, H.W.; Wen, J.; Shen, X.Z.; Yu, R.Q. A new alternating weighted quadrilinear decomposition algorithm with application for analysis of non-quinquelinear five-way data arrays. Sci. Sin. Chim. 2016, 46, 401–408. [Google Scholar] [CrossRef]
- Chiappini, F.A.; Alcaraz, M.R.; Escandar, G.M.; Goicoechea, H.C.; Olivieri, A.C. Chromatographic applications in the multi-way calibration field. Molecules 2021, 26, 6357. [Google Scholar] [CrossRef]
- Wu, H.L.; Long, W.J.; Wang, T.; Dong, M.Y.; Yu, R.Q. Recent applications of multiway calibration methods in environmental analytical chemistry: A review. Microchem. J. 2020, 159, 105575. [Google Scholar] [CrossRef]
- Qing, X.D.; Zhang, X.H.; An, R.; Zhang, J.; Xu, L.; Duponchel, L. A fast and robust third-order multivariate calibration approach coupled with excitation-emission matrix phosphorescence for the quantification and oxidation kinetic study of fluorene in wastewater samples. Chemosensors 2023, 11, 53. [Google Scholar] [CrossRef]
- Wells, M.J.; Funk, D.; Mullins, G.A.; Bell, K.Y. Application of a fluorescence EEM-PARAFAC model for direct and indirect potable water reuse monitoring: Multi-stage oarea-biofiltration without reverse osmosis at Gwinnett County, Georgia, USA. Sci. Total Environ. 2023, 886, 163937. [Google Scholar] [CrossRef]
- Cavaglia, J.; Garcia, S.M.; Roger, J.; Mestres, M.; Boqué, R. Detection of bacterial spoilage during wine alcoholic fermentation using ATR-MIR and MCR-ALS. Food Control 2022, 142, 109269. [Google Scholar] [CrossRef]
- Wu, H.L.; Shibukawa, M.; Oguma, K. An alternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons. J. Chemom. 1998, 12, 1–26. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, X.Y.; Hou, D.B.; Chen, F.; Mao, T.T.; Huang, P.J.; Zhang, G.X. Detection of water contamination events using fluorescence spectroscopy and alternating trilinear decomposition algorithm. J. Spectrosc. 2017, 1, 1485048. [Google Scholar] [CrossRef]
- Tan, F.Y.; Tan, C.; Zhao, A.P.; Li, M.L. Simultaneous determination of free amino acid content in tea infusions by using high-performance liquid chromatography with fluorescence detection coupled with alternating penalty trilinear decomposition algorithm. J. Agric. Food Chem. 2011, 59, 10839–10847. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Qian, W.; Xia, Z.Z.; Wu, Y.; Li, Y.; Gong, Z.Y. Simultaneous and rapid determination of sesamin and sesamolin in sesame oils using excitation-emission matrix fluorescence coupled with self-weighted alternating trilinear decomposition. J. Sci. Food Agric. 2020, 100, 4418–4424. [Google Scholar] [CrossRef]
- Zhang, X.H.; Qing, X.D.; Zhang, J.J.; Yu, Y.; Huang, J.; Kang, C.; Liu, Z. Aqueous two-phase systems coupled with chemometrics-enhanced HPLC-DAD for simultaneous extraction and determination of flavonoids in honey. Food Chem. X 2023, 19, 100766. [Google Scholar] [CrossRef]
- Valverde-Som, L.; Reguera, C.; Herrero, A.; Sarabia, L.A.; Ortiz, M.C. Determination of polymer additive residues that migrate from coffee capsules by means of stir bar sorptive extraction-gas chromatography-mass spectrometry and PARAFAC decomposition. Food Packag. Shelf Life 2021, 28, 100664. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.L.; Wang, T.; Sun, X.D.; Liu, B.B.; Chang, Y.Y.; Chen, J.C.; Ding, Y.J.; Yu, R.Q. Quantitative analysis of carbaryl and thiabendazole in complex matrices using excitation-emission fluorescence matrices with second-order calibration methods. Spectrochim. Acta A 2021, 264, 120267. [Google Scholar] [CrossRef]
- Rasmus, B.; Henk, A.L. A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
- Xing, W.L.; Yang, L.; Zhang, H.; Zhang, X.; Wang, Y.; Bai, P.C.; Zhang, L.L.; Hayakawa, K.; Nagao, S.; Tang, N. Variations in traffic-related polycyclic aromatic hydrocarbons in PM2.5 in Kanazawa, Japan, after the implementation of a new vehicle emission regulation. J. Environ. Sci. 2022, 121, 38–47. [Google Scholar] [CrossRef]
- Najmeddin, A.; Keshavarzi, B. Health risk assessment and source apportionment of polycyclic aromatic hydrocarbons associated with PM10 and road deposited dust in Ahvaz metropolis of Iran. Environ. Geochem. Health 2019, 41, 1267–1290. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.Y.; Liu, X.P.; Wang, W.; Man, Y.B.; Chan, C.Y.; Liu, W.X.; Tao, S.; Wong, M.H. Characterization of particulate-bound PAHs in rural households using different types of domestic energy in Henan Province, China. Sci. Total Environ. 2015, 536, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Giandomenico, S.; Nigro, M.; Parlapiano, I.; Spada, L.; Grattagliano, A.; Prato, E.; Biandolino, F. Effect of in-house cooking in Mytilus galloprovincialis and Trachurus trachurus: Lipid and fatty acids quality and polycyclic aromatic hydrocarbons formation. Food Chem. Toxicol. 2023, 173, 113606. [Google Scholar] [CrossRef] [PubMed]
- Fakinle, B.S.; Odekanle, E.L.; Ike-Ojukwu, C.; Sonibare, O.O.; Falowo, O.A.; Olubiyo, F.W.; Oke, D.O.; Aremu, C.O. Quantification and health impact assessment of polycyclic aromatic hydrocarbons (PAHs) emissions from crop residue combustion. Heliyon 2022, 8, e09113. [Google Scholar] [CrossRef]
- Forcada, S.; Menéndez, M.M.; Stevens, F.; Royo, L.J.; Pierna, J.A.F.; Baeten, V.; Soldado, A. Industrial impact on sustainable dairy farms: Essential elements, hazardous metals and polycyclic aromatic hydrocarbons in forage and cow’s milk. Heliyon 2023, 9, e20977. [Google Scholar] [CrossRef]
Sample No. | Analyte Concentration (μg·mL−1) | |||||||
---|---|---|---|---|---|---|---|---|
CHR | NAP | ACN | FLU | PHE | ANT | PYR | BaA | |
C01 | 0.30 | 0.00 | 0.00 | 0.39 | 0.00 | 0.00 | 0.00 | 0.00 |
C02 | 0.00 | 5.00 | 0.00 | 0.00 | 4.41 | 0.00 | 6.40 | 0.00 |
C03 | 0.00 | 0.00 | 6.70 | 0.00 | 0.00 | 5.60 | 0.00 | 0.68 |
C04 | 0.24 | 2.50 | 1.34 | 0.31 | 0.98 | 3.36 | 5.12 | 0.34 |
C05 | 0.18 | 3.50 | 5.36 | 0.23 | 4.16 | 4.48 | 1.28 | 0.48 |
C06 | 0.12 | 4.00 | 2.68 | 0.16 | 1.96 | 1.12 | 3.84 | 0.54 |
C07 | 0.06 | 4.50 | 4.02 | 0.08 | 2.45 | 2.24 | 2.56 | 0.61 |
V01 | 0.30 | 2.50 | 2.01 | 0.39 | 0.98 | 1.96 | 5.76 | 0.32 |
V02 | 0.24 | 2.18 | 2.68 | 0.31 | 1.47 | 3.08 | 5.12 | 0.41 |
V03 | 0.18 | 3.25 | 3.35 | 0.27 | 1.96 | 5.32 | 4.48 | 0.65 |
V04 | 0.15 | 4.75 | 4.08 | 0.23 | 2.45 | 4.76 | 1.92 | 0.58 |
V05 | 0.12 | 4.25 | 5.36 | 0.20 | 3.43 | 4.20 | 3.20 | 0.51 |
V06 | 0.09 | 3.75 | 6.03 | 0.16 | 3.92 | 3.64 | 3.84 | 0.44 |
Sample | Predicted Concentration (μg mL−1) [Recovery (%)] | |||||||
---|---|---|---|---|---|---|---|---|
CHR | NAP | ACN | FLU | PHE | ANT | PYR | BaA | |
V01 | 0.35 | 2.42 | 2.01 | 0.39 | 0.98 | 1.75 | 6.03 | 0.36 |
[114.3] | [92.6] | [98.4] | [99.3] | [90.7] | [87.4] | [105.6] | [113.6] | |
V02 | 0.27 | 2.63 | 2.68 | 0.3 | 1.39 | 3.22 | 5.2 | 0.38 |
[113.4] | [116.1] | [99.3] | [96.1] | [88.8] | [104.1] | [102.1] | [95.2] | |
V03 | 0.19 | 2.96 | 3.32 | 0.24 | 1.8 | 5.59 | 4.24 | 0.6 |
[108.1] | [88.9] | [98.5] | [87.8] | [88.4] | 105.5] | [94.3] | [92.0] | |
V04 | 0.17 | 4.55 | 4.06 | 0.21 | 2.36 | 4.98 | 1.69 | 0.51 |
[111.2] | [96.4] | [99.2] | [92.0] | [94.9] | [105.0] | [82.2] | [88.6] | |
V05 | 0.11 | 3.53 | 5.12 | 0.15 | 2.91 | 4.14 | 2.67 | 0.43 |
[93.4] | [82.2] | [95.6] | [75.0] | [84.3] | [98.6] | [80.9] | [85.2] | |
V06 | 0.08 | 3.24 | 5.87 | 0.13 | 3.44 | 3.68 | 3.22 | 0.36 |
[97.5] | [84.9] | [97.6] | [79.3] | [87.9] | [100.9] | [82.5] | [81.9] | |
AR a | 105.6 | 95.7 | 98.6 | 88.8 | 92.6 | 100.6 | 92.7 | 92 |
AD b | 7.5 | 9.2 | 0.9 | 7.6 | 4.2 | 4.7 | 9.4 | 7.5 |
RMSEP c | 0.03 | 0.47 | 0.13 | 0.03 | 0.33 | 0.19 | 0.41 | 0.07 |
RRMSEP d | 15.4 | 13.6 | 3.3 | 11. 6 | 13.9 | 5.1 | 10.2 | 13.9 |
t-test e | 1.22 | 0.73 | 1.84 | 2.86 | 2.89 | 0.21 | 1.79 | 1.65 |
R2 f | 0.9399 | 0.9995 | 0.9997 | 0.9962 | 0.9988 | 0.9995 | 0.9922 | 0.9999 |
SEN g | 4.66 | 1.08 | 2.87 | 34.69 | 1.16 | 4.44 | 2.26 | 7.96 |
SEL h | 0.07 | 0.32 | 0.17 | 0.36 | 0.05 | 0.14 | 0.16 | 0.31 |
LOD i | 0.0062 | 0.016 | 0.012 | 0.0043 | 0.026 | 0.076 | 0.023 | 0.0016 |
LOQ i | 0.019 | 0.048 | 0.036 | 0.013 | 0.079 | 0.23 | 0.07 | 0.005 |
Samples | Predicted Values (μg mL−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CHR | NAP | ACN | FLU | PHE | ANT | PYR | BaA | ||
LG1 b | ND a | 0.069 | ND | ND | ND | ND | ND | ND | 0.069 |
LG2 b | ND | 0.96 | 0.072 | ND | ND | ND | ND | ND | 1.03 |
LG3 b | ND | 0.36 | ND | ND | ND | ND | ND | ND | 0.36 |
LG4 b | ND | 0.096 | ND | ND | ND | ND | ND | ND | 0.096 |
LG5 b | ND | 0.41 | ND | ND | ND | ND | ND | ND | 0.41 |
MS1 c | ND | 0.080 | ND | ND | ND | ND | ND | ND | 0.080 |
MS2 c | ND | 0.30 | ND | ND | ND | ND | ND | ND | 0.30 |
MS3 c | ND | 0.45 | 0.077 | ND | ND | ND | ND | ND | 0.53 |
MS4 c | ND | 1.23 | 0.13 | ND | 0.33 | ND | ND | 0.064 | 1.75 |
MS5 c | ND | 2.70 | 0.22 | 0.020 | 0.76 | ND | ND | ND | 3.70 |
MG1 d | ND | 0.20 | 0.24 | ND | ND | ND | ND | ND | 0.44 |
MG2 d | ND | 2.02 | 0.58 | ND | 0.079 | ND | ND | ND | 2.68 |
MG3 d | ND | 0.11 | 0.037 | ND | ND | ND | ND | ND | 0.15 |
MG4 d | ND | 0.078 | ND | ND | ND | ND | ND | ND | 0.078 |
MG5 d | ND | 0.44 | 0.061 | ND | ND | ND | ND | ND | 0.50 |
MP1 e | ND | 0.060 | 0.068 | ND | ND | ND | ND | ND | 0.13 |
MP2 e | ND | 0.77 | 0.34 | ND | ND | ND | ND | ND | 1.11 |
MP3 e | ND | 0.046 | ND | ND | ND | ND | ND | ND | 0.046 |
MP4 e | ND | 0.39 | 0.25 | ND | ND | ND | ND | ND | 0.64 |
MP5 e | ND | 1.63 | 0.60 | ND | ND | ND | ND | 0.013 | 2.24 |
Samples | Predicted Values (μg·mL−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CHR | NAP | ACN | FLU | PHE | ANT | PYR | BaA | ||
LG1 | ND | 3.19 | ND | ND | ND | ND | ND | ND | 3.19 |
LG2 | ND | 1.08 | ND | ND | ND | ND | ND | ND | 1.08 |
LG3 | ND | 4.24 | 0.10 | ND | 0.13 | ND | 0.10 | 0.022 | 4.59 |
LG4 | ND | 7.46 | 0.79 | 0.013 | 0.48 | ND | ND | 0.007 | 8.75 |
LG5 | ND | 3.84 | 0.16 | ND | 0.15 | ND | 0.097 | 0.023 | 4.27 |
MS1 | ND | 7.50 | 0.085 | ND | 0.69 | ND | ND | ND | 8.28 |
MS2 | ND | 2.13 | 0.088 | ND | 0.60 | ND | ND | ND | 2.82 |
MS3 | ND | 5.32 | 0.17 | ND | 0.083 | ND | ND | 0.022 | 5.60 |
MS4 | ND | 3.44 | 0.20 | ND | 0.098 | ND | ND | 0.014 | 3.75 |
MS5 | ND | 0.33 | ND | ND | ND | ND | ND | ND | 0.33 |
MG1 | ND | 3.10 | 0.32 | ND | 0.21 | ND | ND | ND | 3.63 |
MG2 | ND | 1.72 | 0.14 | ND | 0.090 | ND | ND | ND | 1.95 |
MG3 | ND | 0.36 | 0.046 | ND | ND | ND | ND | ND | 0.41 |
MG4 | ND | 1.14 | 0.14 | ND | 0.092 | ND | ND | ND | 1.37 |
MG5 | ND | 2.36 | 0.17 | ND | 0.14 | ND | ND | ND | 2.67 |
MP1 | ND | 3.01 | 0.17 | ND | 0.14 | ND | ND | 0.006 | 3.33 |
MP2 | ND | 6.33 | 0.35 | ND | 0.23 | ND | 0.13 | 0.033 | 7.07 |
MP3 | ND | 1.63 | 0.056 | ND | ND | ND | ND | ND | 1.69 |
MP4 | ND | 1.34 | 0.13 | ND | 0.13 | ND | ND | 0.029 | 1.63 |
MP5 | ND | 1.92 | 0.067 | ND | 0.096 | ND | ND | ND | 2.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Xia, Y.; Wang, Y.; Lin, L.; An, R.; Xu, L.; Qing, X. Fast Determination and Source Apportionment of Eight Polycyclic Aromatic Hydrocarbons in PM10 Using the Chemometric-Assisted HPLC-DAD Method. Chemosensors 2024, 12, 220. https://doi.org/10.3390/chemosensors12100220
Hu T, Xia Y, Wang Y, Lin L, An R, Xu L, Qing X. Fast Determination and Source Apportionment of Eight Polycyclic Aromatic Hydrocarbons in PM10 Using the Chemometric-Assisted HPLC-DAD Method. Chemosensors. 2024; 12(10):220. https://doi.org/10.3390/chemosensors12100220
Chicago/Turabian StyleHu, Ting, Yitao Xia, You Wang, Li Lin, Rong An, Ling Xu, and Xiangdong Qing. 2024. "Fast Determination and Source Apportionment of Eight Polycyclic Aromatic Hydrocarbons in PM10 Using the Chemometric-Assisted HPLC-DAD Method" Chemosensors 12, no. 10: 220. https://doi.org/10.3390/chemosensors12100220
APA StyleHu, T., Xia, Y., Wang, Y., Lin, L., An, R., Xu, L., & Qing, X. (2024). Fast Determination and Source Apportionment of Eight Polycyclic Aromatic Hydrocarbons in PM10 Using the Chemometric-Assisted HPLC-DAD Method. Chemosensors, 12(10), 220. https://doi.org/10.3390/chemosensors12100220