Aptasensors for the Detection of Environmental Contaminants of High Concern in Water Bodies: A Systematic Review
Abstract
:1. Global Problem of Contaminants in Water
2. Materials and Methods
3. Results and Discussion
3.1. Production of Aptamers as Recognizing Elements
3.2. Overview of Data Collection
3.3. Analysis of Categorizations
3.3.1. Environmental Contaminants
3.3.2. Sensor Design and Sensitivity
3.3.3. Accuracy and Precision
3.3.4. Selectivity
3.3.5. Stability
3.3.6. Scalability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Shehu, Z.; Nyakairu, G.W.A.; Tebandeke, E.; Odume, O.N. Overview of African Water Resources Contamination by Contaminants of Emerging Concern. Sci. Total Environ. 2022, 852, 158303. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, X.; Jiang, J.; Han, J.; Li, W.; Li, X.; Yee Leung, K.M.; Snyder, S.A.; Alvarez, P.J.J. Which Micropollutants in Water Environments Deserve More Attention Globally? Environ. Sci. Technol. 2022, 56, 13–29. [Google Scholar] [CrossRef]
- Warner, W.; Licha, T.; Nödler, K. Qualitative and Quantitative Use of Micropollutants as Source and Process Indicators. A Review. Sci. Total Environ. 2019, 686, 75–89. [Google Scholar] [CrossRef]
- Kumar, N.M.; Sudha, M.C.; Damodharam, T.; Varjani, S. Chapter 3—Micro-Pollutants in Surface Water: Impacts on the Aquatic Environment and Treatment Technologies. In Current Developments in Biotechnology and Bioengineering; Varjani, S., Pandey, A., Tyagi, R.D., Ngo, H.H., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 41–62. ISBN 978-0-12-819594-9. [Google Scholar]
- Belete, B.; Desye, B.; Ambelu, A.; Yenew, C. Micropollutant Removal Efficiency of Advanced Wastewater Treatment Plants: A Systematic Review. Environ. Health Insights 2023, 17, 11786302231195158. [Google Scholar] [CrossRef]
- Barcellos, D.d.S.; Procopiuck, M.; Bollmann, H.A. Management of Pharmaceutical Micropollutants Discharged in Urban Waters: 30 years of Systematic Review Looking at Opportunities for Developing Countries. Sci. Total Environ. 2022, 809, 151128. [Google Scholar] [CrossRef] [PubMed]
- Goutte, A.; Alliot, F.; Budzinski, H.; Simonnet-Laprade, C.; Santos, R.; Lachaux, V.; Maciejewski, K.; Le Menach, K.; Labadie, P. Trophic Transfer of Micropollutants and Their Metabolites in an Urban Riverine Food Web. Environ. Sci. Technol. 2020, 54, 8043–8050. [Google Scholar] [CrossRef]
- Desiante, W.L.; Minas, N.S.; Fenner, K. Micropollutant Biotransformation and Bioaccumulation in Natural Stream Biofilms. Water Res. 2021, 193, 116846. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.F.; Duarte, I.A.; Duarte, B.; Freitas, A.; Pouca, A.S.V.; Barbosa, J.; Gillanders, B.M.; Reis-Santos, P. Environmental Risk Assessment and Bioaccumulation of Pharmaceuticals in a Large Urbanized Estuary. Sci. Total Environ. 2021, 783, 147021. [Google Scholar] [CrossRef]
- Sackaria, M.; Elango, L. Organic Micropollutants in Groundwater of India—A Review. Water Environ. Res. 2020, 92, 504–523. [Google Scholar] [CrossRef]
- Kandie, F.J.; Krauss, M.; Beckers, L.-M.; Massei, R.; Fillinger, U.; Becker, J.; Liess, M.; Torto, B.; Brack, W. Occurrence and Risk Assessment of Organic Micropollutants in Freshwater Systems within the Lake Victoria South Basin, Kenya. Sci. Total Environ. 2020, 714, 136748. [Google Scholar] [CrossRef]
- Borrull, J.; Colom, A.; Fabregas, J.; Borrull, F.; Pocurull, E. Presence, Behaviour and Removal of Selected Organic Micropollutants through Drinking Water Treatment. Chemosphere 2021, 276, 130023. [Google Scholar] [CrossRef]
- Cai, Y.; Tian, T.; Huang, Y.; Yao, H.; Qi, X.; Fan, J.; Kuang, Y.; Chen, J.; Li, X.; Kadokami, K. Occurrence and Health Risks of Organic Micropollutants in Tap Water in Dalian. Chem. Res. Toxicol. 2023, 36, 1938–1946. [Google Scholar] [CrossRef]
- McGinley, J.; Healy, M.G.; Ryan, P.C.; Harmon O’Driscoll, J.; Mellander, P.-E.; Morrison, L.; Siggins, A. Impact of Historical Legacy Pesticides on Achieving Legislative Goals in Europe. Sci. Total Environ. 2023, 873, 162312. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide Cases of Water Pollution by Emerging Contaminants: A Review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Mutzner, L.; Furrer, V.; Castebrunet, H.; Dittmer, U.; Fuchs, S.; Gernjak, W.; Gromaire, M.-C.; Matzinger, A.; Mikkelsen, P.S.; Selbig, W.R.; et al. A Decade of Monitoring Micropollutants in Urban Wet-Weather Flows: What Did We Learn? Water Res. 2022, 223, 118968. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging Contaminants of High Concern for the Environment: Current Trends and Future Research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef]
- Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging Insights into the Use of Carbon-Based Nanomaterials for the Electrochemical Detection of Heavy Metal Ions. Coord. Chem. Rev. 2023, 476, 214920. [Google Scholar] [CrossRef]
- Rasheed, T.; Shafi, S.; Sher, F. Smart Nano-Architectures as Potential Sensing Tools for Detecting Heavy Metal Ions in Aqueous Matrices. Trends Environ. Anal. Chem. 2022, 36, e00179. [Google Scholar] [CrossRef]
- Escandar, G.M.; Olivieri, A.C. A Critical Review on the Development of Optical Sensors for the Determination of Heavy Metals in Water Samples. The Case of Mercury(II) Ion. ACS Omega 2022, 7, 39574–39585. [Google Scholar] [CrossRef]
- Nangare, S.N.; Patil, S.R.; Patil, A.G.; Khan, Z.G.; Deshmukh, P.K.; Tade, R.S.; Mahajan, M.R.; Bari, S.B.; Patil, P.O. Structural Design of Nanosize-Metal–Organic Framework-Based Sensors for Detection of Organophosphorus Pesticides in Food and Water Samples: Current Challenges and Future Prospects. J. Nanostructure Chem. 2022, 12, 729–764. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ghosh, K.; Bhattacharyya, S.; Behera, B.K.; Singh, O.K.; Pal, S. A Review on Recent Trends in Advancement of Bio-Sensory Techniques Toward Pesticide Detection. Food Anal. Methods 2022, 15, 3416–3434. [Google Scholar] [CrossRef]
- Reynoso, E.; Torres, E.; Bettazzi, F.; Palchetti, I. Trends and Perspectives in Immunosensors for Determination of Currently-Used Pesticides: The Case of Glyphosate, Organophosphates, and Neonicotinoids. Biosensors 2019, 9, 20. [Google Scholar] [CrossRef]
- Papagiannaki, D.; Belay, M.H.; Gonçalves, N.P.F.; Robotti, E.; Bianco-Prevot, A.; Binetti, R.; Calza, P. From Monitoring to Treatment, How to Improve Water Quality: The Pharmaceuticals Case. Chem. Eng. J. Adv. 2022, 10, 100245. [Google Scholar] [CrossRef]
- Bustos Bustos, E.; Sandoval-González, A.; Martínez-Sánchez, C. Detection and Treatment of Persistent Pollutants in Water: General Review of Pharmaceutical Products. ChemElectroChem 2022, 9, e202200188. [Google Scholar] [CrossRef]
- Yu, X.; Yu, F.; Li, Z.; Zhan, J. Occurrence, Distribution, and Ecological Risk Assessment of Pharmaceuticals and Personal Care Products in the Surface Water of the Middle and Lower Reaches of the Yellow River (Henan Section). J. Hazard. Mater. 2023, 443, 130369. [Google Scholar] [CrossRef]
- Gugliandolo, E.; Licata, P.; Crupi, R.; Albergamo, A.; Jebara, A.; Lo Turco, V.; Potortì, A.G.; Mansour, H.B.; Cuzzocrea, S.; Di Bella, G. Plasticizers as Microplastics Tracers in Tunisian Marine Environment. Front. Mar. Sci. 2020, 7, 89398. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in Freshwaters and Drinking Water: Critical Review and Assessment of Data Quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Kanan, S.; Moyet, M.; Obeideen, K.; El-Sayed, Y.; Mohamed, A.A. Occurrence, Analysis and Removal of Pesticides, Hormones, Pharmaceuticals, and Other Contaminants in Soil and Water Streams for the Past Two Decades: A Review. Res. Chem. Intermed. 2022, 48, 3633–3683. [Google Scholar] [CrossRef]
- Otoo, J.A.; Schlappi, T.S. REASSURED Multiplex Diagnostics: A Critical Review and Forecast. Biosensors 2022, 12, 124. [Google Scholar] [CrossRef]
- Zhao, Y.; Yavari, K.; Liu, J. Critical Evaluation of Aptamer Binding for Biosensor Designs. TrAC Trends Anal. Chem. 2022, 146, 116480. [Google Scholar] [CrossRef]
- McConnell, E.M.; Nguyen, J.; Li, Y. Aptamer-Based Biosensors for Environmental Monitoring. Front. Chem. 2020, 8, 434. [Google Scholar] [CrossRef] [PubMed]
- Palchetti, I.; Mascini, M. Nucleic Acid Biosensors for Environmental Pollution Monitoring. Analyst 2008, 133, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Mascini, M.; Palchetti, I.; Tombelli, S. Nucleic Acid and Peptide Aptamers: Fundamentals and Bioanalytical Aspects. Angew. Chem. Int. Ed. 2012, 51, 1316–1332. [Google Scholar] [CrossRef] [PubMed]
- Palchetti, I.; Mascini, M. Electrochemical Nanomaterial-Based Nucleic Acid Aptasensors. Anal. Bioanal. Chem. 2012, 402, 3103–3114. [Google Scholar] [CrossRef] [PubMed]
- Labuda, J.; Brett, A.M.O.; Evtugyn, G.; Fojta, M.; Mascini, M.; Ozsoz, M.; Palchetti, I.; Paleček, E.; Wang, J. Electrochemical Nucleic Acid-Based Biosensors: Concepts, Terms, and Methodology (IUPAC Technical Report). Pure Appl. Chem. 2010, 82, 1161–1187. [Google Scholar] [CrossRef]
- Kudłak, B.; Wieczerzak, M. Aptamer Based Tools for Environmental and Therapeutic Monitoring: A Review of Developments, Applications, Future Perspectives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 816–867. [Google Scholar] [CrossRef]
- Rapini, R.; Marrazza, G. Electrochemical Aptasensors for Contaminants Detection in Food and Environment: Recent Advances. Bioelectrochemistry 2017, 118, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Geleta, G.S.; Zhao, Z.; Wang, Z. Electrochemical Biosensors for Detecting Microbial Toxins by Graphene-Based Nanocomposites. J. Anal. Test. 2018, 2, 20–25. [Google Scholar] [CrossRef]
- Kaur, H.; Shorie, M. Nanomaterial Based Aptasensors for Clinical and Environmental Diagnostic Applications. Nanoscale Adv. 2019, 1, 2123–2138. [Google Scholar] [CrossRef]
- Geleta, G.S. A Colorimetric Aptasensor Based on Two Dimensional (2D) Nanomaterial and Gold Nanoparticles for Detection of Toxic Heavy Metal Ions: A Review. Food Chem. Adv. 2023, 2, 100184. [Google Scholar] [CrossRef]
- Ding, R.; Li, Z.; Xiong, Y.; Wu, W.; Yang, Q.; Hou, X. Electrochemical (Bio)Sensors for the Detection of Organophosphorus Pesticides Based on Nanomaterial-Modified Electrodes: A Review. Crit. Rev. Anal. Chem. 2023, 53, 1766–1791. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Marty, J.L. Aptamer Based Electrochemical Sensors for Emerging Environmental Pollutants. Front. Chem. 2014, 2, 41. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lu, J. Chemiluminescence-Based Aptasensors for Various Target Analytes. Luminescence 2018, 33, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yu, Z.; Han, X.; Lai, R.Y. Electrochemical Aptamer-Based Sensors for Food and Water Analysis: A Review. Anal. Chim. Acta 2019, 1051, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Musarurwa, H.; Tawanda Tavengwa, N. Extraction and Electrochemical Sensing of Pesticides in Food and Environmental Samples by Use of Polydopamine-Based Materials. Chemosphere 2021, 266, 129222. [Google Scholar] [CrossRef] [PubMed]
- Kurup, C.P.; Mohd-Naim, N.F.; Ahmed, M.U. Recent Trends in Nanomaterial-Based Signal Amplification in Electrochemical Aptasensors. Crit. Rev. Biotechnol. 2022, 42, 794–812. [Google Scholar] [CrossRef] [PubMed]
- Farid, S.; Ghosh, S.; Dutta, M.; Stroscio, M.A. Aptamer-Based Optical and Electrochemical Sensors: A Review. Chemosensors 2023, 11, 569. [Google Scholar] [CrossRef]
- Hashem, A.; Hossain, M.A.M.; Marlinda, A.R.; Mamun, M.A.; Simarani, K.; Johan, M.R. Nanomaterials Based Electrochemical Nucleic Acid Biosensors for Environmental Monitoring: A Review. Appl. Surf. Sci. Adv. 2021, 4, 100064. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.; Liu, B.; Zhang, D.; Zhang, C.; Guo, Y.; Chu, X.; Wang, W.; Wang, H.; Yan, X.; et al. Signal Enhancing Strategies in Aptasensors for the Detection of Small Molecular Contaminants by Nanomaterials and Nucleic Acid Amplification. Talanta 2022, 236, 122866. [Google Scholar] [CrossRef]
- Azzouz, A.; Kumar, V.; Hejji, L.; Kim, K.-H. Advancements in Nanomaterial-Based Aptasensors for the Detection of Emerging Organic Pollutants in Environmental and Biological Samples. Biotechnol. Adv. 2023, 66, 108156. [Google Scholar] [CrossRef]
- Rahimizadeh, K.; Zahra, Q.; Chen, S.; Le, B.T.; Ullah, I.; Veedu, R.N. Nanoparticles-Assisted Aptamer Biosensing for the Detection of Environmental Pathogens. Environ. Res. 2023, 238, 117123. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, C.; Ma, T.; Liu, X.; Chen, Z.; Li, S.; Deng, Y. Advances in Aptamer Screening and Aptasensors’ Detection of Heavy Metal Ions. J. Nanobiotechnol. 2021, 19, 166. [Google Scholar] [CrossRef] [PubMed]
- Dolati, S.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Recent Nucleic Acid Based Biosensors for Pb2+ Detection. Sens. Actuators B Chem. 2017, 246, 864–878. [Google Scholar] [CrossRef]
- Khoshbin, Z.; Housaindokht, M.R.; Verdian, A.; Bozorgmehr, M.R. Simultaneous Detection and Determination of Mercury (II) and Lead (II) Ions through the Achievement of Novel Functional Nucleic Acid-Based Biosensors. Biosens. Bioelectron. 2018, 116, 130–147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, Y.; Dong, Y.; Han, X.; Wang, S.; Liang, X. Aptamers and Aptasensors for Highly Specific Recognition and Sensitive Detection of Marine Biotoxins: Recent Advances and Perspectives. Toxins 2018, 10, 427. [Google Scholar] [CrossRef]
- Kim, S.H.; Thoa, T.T.T.; Gu, M.B. Aptasensors for Environmental Monitoring of Contaminants in Water and Soil. Curr. Opin. Environ. Sci. Health 2019, 10, 9–21. [Google Scholar] [CrossRef]
- Yue, F.; Li, F.; Kong, Q.; Guo, Y.; Sun, X. Recent Advances in Aptamer-Based Sensors for Aminoglycoside Antibiotics Detection and Their Applications. Sci. Total Environ. 2021, 762, 143129. [Google Scholar] [CrossRef]
- Li, T.; Wang, J.; Zhu, L.; Li, C.; Chang, Q.; Xu, W. Advanced Screening and Tailoring Strategies of Pesticide Aptamer for Constructing Biosensor. Crit. Rev. Food Sci. Nutr. 2023, 63, 10974–10994. [Google Scholar] [CrossRef]
- Khosropour, H.; Kalambate, P.K.; Kalambate, R.P.; Permpoka, K.; Zhou, X.; Chen, G.Y.; Laiwattanapaisal, W. A Comprehensive Review on Electrochemical and Optical Aptasensors for Organophosphorus Pesticides. Mikrochim. Acta 2022, 189, 362. [Google Scholar] [CrossRef]
- Qin, N.; Liu, J.; Li, F.; Liu, J. Recent Advances in Aptasensors for Rapid Pesticide Residues Detection. Crit. Rev. Anal. Chem. 2023, 53, 1–22. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Giannini, M.; Nizami, A.-S. Environmental Implications and Levelized Cost Analysis of E-Fuel Production under Photovoltaic Energy, Direct Air Capture, and Hydrogen. Environ. Res. 2024, 246, 118163. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science (1979) 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- ZOU, X.-M.; ZHOU, J.-W.; SONG, S.-H.; CHEN, G.-H. Screening of Oligonucleotide Aptamers and Application in Detection of Pesticide and Veterinary Drug Residues. Chin. J. Anal. Chem. 2019, 47, 488–499. [Google Scholar] [CrossRef]
- Robertson, D.L.; Joyce, G.F. Selection in Vitro of an RNA Enzyme That Specifically Cleaves Single-Stranded DNA. Nature 1990, 344, 467–468. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B. Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. Int. J. Mol. Sci. 2017, 18, 2142. [Google Scholar] [CrossRef] [PubMed]
- Prante, M.; Segal, E.; Scheper, T.; Bahnemann, J.; Walter, J. Aptasensors for Point-of-Care Detection of Small Molecules. Biosensors 2020, 10, 108. [Google Scholar] [CrossRef]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical Factors and Optimization Strategies for Successful Aptamer Selection. Biotechnol. Appl. Biochem. 2022, 69, 1771–1792. [Google Scholar] [CrossRef]
- Kadam, U.S.; Hong, J.C. Advances in Aptameric Biosensors Designed to Detect Toxic Contaminants from Food, Water, Human Fluids, and the Environment. Trends Environ. Anal. Chem. 2022, 36, e00184. [Google Scholar] [CrossRef]
- Lyu, C.; Khan, I.M.; Wang, Z. Capture-SELEX for Aptamer Selection: A Short Review. Talanta 2021, 229, 122274. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Bhandari, G.; Bilal, M. Occurrence, Toxicity Impacts and Mitigation of Emerging Micropollutants in the Aquatic Environments: Recent Tendencies and Perspectives. J. Environ. Chem. Eng. 2022, 10, 107598. [Google Scholar] [CrossRef]
- Reynoso, E.C.; Laschi, S.; Palchetti, I.; Torres, E. Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. Chemosensors 2021, 9, 232. [Google Scholar] [CrossRef]
- Mali, H.; Shah, C.; Raghunandan, B.H.; Prajapati, A.S.; Patel, D.H.; Trivedi, U.; Subramanian, R.B. Organophosphate Pesticides an Emerging Environmental Contaminant: Pollution, Toxicity, Bioremediation Progress, and Remaining Challenges. J. Environ. Sci. 2023, 127, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Rawat, M.; Malyan, S.K.; Singh, R.; Tyagi, V.K.; Singh, K.; Kashyap, S.; Kumar, S.; Sharma, M.; Panday, B.K.; et al. Global Distribution of Pesticides in Freshwater Resources and Their Remediation Approaches. Environ. Res. 2023, 225, 115605. [Google Scholar] [CrossRef] [PubMed]
- Bettazzi, F.; Romero Natale, A.; Torres, E.; Palchetti, I. Glyphosate Determination by Coupling an Immuno-Magnetic Assay with Electrochemical Sensors. Sensors 2018, 18, 2965. [Google Scholar] [CrossRef] [PubMed]
- Berti, F.; Lozzi, L.; Palchetti, I.; Santucci, S.; Marrazza, G. Aligned Carbon Nanotube Thin Films for DNA Electrochemical Sensing. Electrochim. Acta 2009, 54, 5035–5041. [Google Scholar] [CrossRef]
- Qi, Z.; Yan, P.; Qian, J.; Zhu, L.; Li, H.; Xu, L. A Photoelectrochemical Aptasensor Based on CoN/g-C3N4 Donor-Acceptor Configuration for Sensitive Detection of Atrazine. Sens. Actuators B Chem. 2023, 387, 133792. [Google Scholar] [CrossRef]
- Wei, J.; Ding, J.; Hu, Q.; Tian, X.; Bai, M.; Qian, J.; Wang, K. Internal Reference Self-Powered Aptasensor for on-Site Detection of MC-RR Used Sunlight as Light Source and CoMoS4 Hollow Nanospheres as Photocathode. Anal. Chim. Acta 2023, 1262, 341239. [Google Scholar] [CrossRef]
- Zhang, Z.; Karimi-Maleh, H. In Situ Synthesis of Label-Free Electrochemical Aptasensor-Based Sandwich-like AuNPs/PPy/Ti3C2Tx for Ultrasensitive Detection of Lead Ions as Hazardous Pollutants in Environmental Fluids. Chemosphere 2023, 324, 138302. [Google Scholar] [CrossRef]
- Li, L.; Chen, B.; Liu, X.; Jiang, P.; Luo, L.; Li, X.; You, T. ‘On-off-on’ Electrochemiluminescent Aptasensor for Hg2+ Based on Dual Signal Amplification Enabled by a Self-Enhanced Luminophore and Resonance Energy Transfer. J. Electroanal. Chem. 2022, 907, 116063. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, L.; Yang, M.; Jia, Y.; Yan, Y.; Qian, J.; Chen, F.; Li, H. Design of 2D/2D CoAl LDH/g-C3N4 Heterojunction-Driven Signal Amplification: Fabrication and Assay for Photoelectrochemical Aptasensor of Ofloxacin. Sens. Actuators B Chem. 2022, 353, 131187. [Google Scholar] [CrossRef]
- Liu, T.; Lin, B.; Yuan, X.; Chu, Z.; Jin, W. In Situ Fabrication of Urchin-like Cu@carbon Nanoneedles Based Aptasensor for Ultrasensitive Recognition of Trace Mercury Ion. Biosens. Bioelectron. 2022, 206, 114147. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, L.; Dong, J.; Yan, P.; Chen, F.; Qian, J.; Li, H. An Enhanced Photoelectrochemical Ofloxacin Aptasensor Using NiFe Layered Double Hydroxide/Graphitic Carbon Nitride Heterojunction. Electrochim. Acta 2021, 368, 137595. [Google Scholar] [CrossRef]
- Hamami, M.; Bouaziz, M.; Raouafi, N.; Bendounan, A.; Korri-Youssoufi, H. MoS2/PPy Nanocomposite as a Transducer for Electrochemical Aptasensor of Ampicillin in River Water. Biosensors 2021, 11, 311. [Google Scholar] [CrossRef]
- Salandari-Jolge, N.; Ensafi, A.A.; Rezaei, B. Ultra-Sensitive Electrochemical Aptasensor Based on Zeolitic Imidazolate Framework-8 Derived Ag/Au Core-Shell Nanoparticles for Mercury Detection in Water Samples. Sens. Actuators B Chem. 2021, 331, 129426. [Google Scholar] [CrossRef]
- Tian, C.; Zhao, L.; Zhu, J.; Zhang, S. Ultrasensitive Detection of Trace Hg2+ by SERS Aptasensor Based on Dual Recycling Amplification in Water Environment. J. Hazard. Mater. 2021, 416, 126251. [Google Scholar] [CrossRef]
- Lin, J.; Shi, A.; Zheng, Z.; Huang, L.; Wang, Y.; Lin, H.; Lin, X. Simultaneous Quantification of Ampicillin and Kanamycin in Water Samples Based on Lateral Flow Aptasensor Strip with an Internal Line. Molecules 2021, 26, 3806. [Google Scholar] [CrossRef]
- Qi, H.; Huang, X.; Wu, J.; Zhang, J.; Wang, F.; Qu, H.; Zheng, L. A Disposable Aptasensor Based on a Gold-Plated Coplanar Electrode Array for on-Site and Real-Time Determination of Cu2+. Anal. Chim. Acta 2021, 1183, 338991. [Google Scholar] [CrossRef]
- Song, Y.; Xu, M.; Liu, X.; Li, Z.; Wang, C.; Jia, Q.; Zhang, Z.; Du, M. A Label-Free Enrofloxacin Electrochemical Aptasensor Constructed by a Semiconducting CoNi-Based Metal–Organic Framework (MOF). Electrochim. Acta 2021, 368, 137609. [Google Scholar] [CrossRef]
- Yuan, R.; Ding, L.; You, F.; Wen, Z.; Liu, Q.; Wang, K. B, N Co-Doped Graphene Synergistic Catalyzed ZnO Quantum Dots with Amplified Cathodic Electrochemiluminescence for Fabricating Microcystin-LR Aptasensor. Sens. Actuators B Chem. 2021, 349, 130795. [Google Scholar] [CrossRef]
- Yuan, R.; Wen, Z.; You, F.; Jiang, D.; Wang, K. Catalysis-Induced Performance Enhancement of an Electrochemical Microcystin-LR Aptasensor Based on Cobalt-Based Oxide on a B, N Co-Doped Graphene Hydrogel. Analyst 2021, 146, 2574–2580. [Google Scholar] [CrossRef]
- Li, J.; Shan, X.; Jiang, D.; Chen, Z. An Ultrasensitive Electrochemiluminescence Aptasensor for the Detection of Diethylstilbestrol Based on the Enhancing Mechanism of the Metal–Organic Framework NH2-MIL-125(Ti) in a 3,4,9,10-Perylenetetracarboxylic Acid/K2S2O8 System. Analyst 2020, 145, 3306–3312. [Google Scholar] [CrossRef]
- Mohammadi, A.; Heydari-Bafrooei, E.; Foroughi, M.M.; Mohammadi, M. Electrochemical Aptasensor for Ultrasensitive Detection of PCB77 Using Thionine-Functionalized MoS2-RGO Nanohybrid. Microchem. J. 2020, 155, 104747. [Google Scholar] [CrossRef]
- Song, Y.; Xu, M.; Li, Z.; He, L.; Hu, M.; He, L.; Zhang, Z.; Du, M. Ultrasensitive Detection of Bisphenol A under Diverse Environments with an Electrochemical Aptasensor Based on Multicomponent AgMo Heteronanostructure. Sens. Actuators B Chem. 2020, 321, 128527. [Google Scholar] [CrossRef]
- Xu, L.; Duan, W.; Chen, F.; Zhang, J.; Li, H. A Photoelectrochemical Aptasensor for the Determination of Bisphenol A Based on the Cu (I) Modified Graphitic Carbon Nitride. J. Hazard. Mater. 2020, 400, 123162. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, J.; Nguyen, E.P.; Tao, D.; Cheng, J.; Pan, H.; Zhang, L.; Jaffrezic-Renault, N.; Guo, Z. A Novel SWCNT-Amplified “Signal-on” Electrochemical Aptasensor for the Determination of Trace Level of Bisphenol A in Human Serum and Lake Water. Microchim. Acta 2020, 187, 500. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, C.; Shi, H.; Zhao, G. Design of a Simple and Novel Photoelectrochemical Aptasensor for Detection of 3,3′,4,4′-Tetrachlorobiphenyl. Biosens. Bioelectron. 2019, 124–125, 8–14. [Google Scholar] [CrossRef]
- Liu, X.; Hu, M.; Wang, M.; Song, Y.; Zhou, N.; He, L.; Zhang, Z. Novel Nanoarchitecture of Co-MOF-on-TPN-COF Hybrid: Ultralowly Sensitive Bioplatform of Electrochemical Aptasensor toward Ampicillin. Biosens. Bioelectron. 2019, 123, 59–68. [Google Scholar] [CrossRef]
- Zhou, N.; Ma, Y.; Hu, B.; He, L.; Wang, S.; Zhang, Z.; Lu, S. Construction of Ce-MOF@COF Hybrid Nanostructure: Label-Free Aptasensor for the Ultrasensitive Detection of Oxytetracycline Residues in Aqueous Solution Environments. Biosens. Bioelectron. 2019, 127, 92–100. [Google Scholar] [CrossRef]
- Song, J.; Huang, M.; Jiang, N.; Zheng, S.; Mu, T.; Meng, L.; Liu, Y.; Liu, J.; Chen, G. Ultrasensitive Detection of Amoxicillin by TiO2-g-C3N4@AuNPs Impedimetric Aptasensor: Fabrication, Optimization, and Mechanism. J. Hazard. Mater. 2020, 391, 122024. [Google Scholar] [CrossRef]
- Kim, W.H.; Lee, J.U.; Jeon, M.J.; Park, K.H.; Sim, S.J. Three-Dimensional Hierarchical Plasmonic Nano-Architecture Based Label-Free Surface-Enhanced Raman Spectroscopy Detection of Urinary Exosomal MiRNA for Clinical Diagnosis of Prostate Cancer. Biosens. Bioelectron. 2022, 205, 114116. [Google Scholar] [CrossRef]
- Li, S.; Ma, X.; Pang, C.; Tian, H.; Xu, Z.; Yang, Y.; Lv, D.; Ge, H. Fluorometric Aptasensor for Cadmium(II) by Using an Aptamer-Imprinted Polymer as the Recognition Element. Microchim. Acta 2019, 186, 823. [Google Scholar] [CrossRef]
- Memon, A.G.; Xing, Y.; Zhou, X.; Wang, R.; Liu, L.; Zeng, S.; He, M.; Ma, M. Ultrasensitive Colorimetric Aptasensor for Hg2+ Detection Using Exo-III Assisted Target Recycling Amplification and Unmodified AuNPs as Indicators. J. Hazard. Mater. 2020, 384, 120948. [Google Scholar] [CrossRef]
- Rabai, S.; Benounis, M.; Catanante, G.; Baraket, A.; Errachid, A.; Jaffrezic Renault, N.; Marty, J.-L.; Rhouati, A. Development of a Label-Free Electrochemical Aptasensor Based on Diazonium Electrodeposition: Application to Cadmium Detection in Water. Anal. Biochem. 2021, 612, 113956. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, Y.; Wang, H.; Li, H.; Fang, T.; Wang, Z.; Dai, Z. Self-Assembled Electroactive MOF–Magnetic Dispersible Aptasensor Enables Ultrasensitive Microcystin-LR Detection in Eutrophic Water. Chem. Eng. J. 2023, 466, 142809. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, C.; Dong, N.; Liu, D.; You, T. Laser Induced Graphene Electrochemical Aptasensor Based on Tetrahedral DNA for Ultrasensitive On-Site Detection of Microcystin-LR. Biosens. Bioelectron. 2023, 239, 115610. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, X.; Lu, G.; Du, B.; Liu, M. A Highly Sensitive and Selective Photoelectrochemical Aptasensor for Atrazine Based on Au NPs/3DOM TiO2 Photonic Crystal Electrode. J. Hazard. Mater. 2023, 451, 131132. [Google Scholar] [CrossRef]
- Xu, J.; Qing, T.; Jiang, Z.; Zhang, P.; Feng, B. Graphene Oxide-Regulated Low-Background Aptasensor for the “Turn on” Detection of Tetracycline. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 260, 119898. [Google Scholar] [CrossRef]
- Mat Zaid, M.H.; Abdullah, J.; Rozi, N.; Mohamad Rozlan, A.A.; Abu Hanifah, S. A Sensitive Impedimetric Aptasensor Based on Carbon Nanodots Modified Electrode for Detection of 17ß-Estradiol. Nanomaterials 2020, 10, 1346. [Google Scholar] [CrossRef]
- Yildirim-Tirgil, N.; Lee, J.; Cho, H.; Lee, H.; Somu, S.; Busnaina, A.; Gu, A.Z. A SWCNT Based Aptasensor System for Antibiotic Oxytetracycline Detection in Water Samples. Anal. Methods 2019, 11, 2692–2699. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, P.; Lu, G.; Chen, J.; Chen, F.; Xu, L. A Highly Selective Photoelectrochemical Chloramphenicol Aptasensor Based on AgBr/BiOBr Heterojunction. Inorg. Chem. Commun. 2021, 123, 108333. [Google Scholar] [CrossRef]
- Aryal, P.; Hefner, C.; Martinez, B.; Henry, C.S. Microfluidics in Environmental Analysis: Advancements, Challenges, and Future Prospects for Rapid and Efficient Monitoring. Lab Chip 2024, 24, 1175–1206. [Google Scholar] [CrossRef]
- Sfragano, P.S.; Reynoso, E.C.; Rojas-Ruíz, N.E.; Laschi, S.; Rossi, G.; Buchinger, M.; Torres, E.; Palchetti, I. A Microfluidic Card-Based Electrochemical Assay for the Detection of Sulfonamide Resistance Genes. Talanta 2024, 271, 125718. [Google Scholar] [CrossRef]
- Aslan, Y.; Atabay, M.; Chowdhury, H.K.; Göktürk, I.; Saylan, Y.; Inci, F. Aptamer-Based Point-of-Care Devices: Emerging Technologies and Integration of Computational Methods. Biosensors 2023, 13, 569. [Google Scholar] [CrossRef]
- Lan, Y.; He, B.; Tan, C.S.; Ming, D. Applications of Smartphone-Based Aptasensor for Diverse Targets Detection. Biosensors 2022, 12, 477. [Google Scholar] [CrossRef]
- Xu, C.; Lin, M.; Song, C.; Chen, D.; Bian, C. A Gold Nanoparticle-Based Visual Aptasensor for Rapid Detection of Acetamiprid Residues in Agricultural Products Using a Smartphone. RSC Adv. 2022, 12, 5540–5545. [Google Scholar] [CrossRef]
- Deiminiat, B.; Rounaghi, G.H. Fabrication of a Novel Photoelectrochemical Aptasensor Using Gold Nanoparticle-Sensitized TiO2 Film for Quantitative Determination of Diazinon in Solutions. Electrocatalysis 2023, 14, 484–498. [Google Scholar] [CrossRef]
- Fan, P.; Qian, X.; Li, Q.; Jiang, P.; Wu, Q.; Huang, G.; Zhang, Z.; Li, L. A Novel Label-Free Dual-Mode Aptasensor Based on the Mutual Regulation of Silver Nanoclusters and MoSe2 Nanosheets for Reliable Detection of Ampicillin. Anal. Chim. Acta 2023, 1251, 340997. [Google Scholar] [CrossRef]
- Gaviria-Arroyave, M.I.; Arango, J.P.; Barrientos Urdinola, K.; Cano, J.B.; Peñuela Mesa, G.A. Fluorescent Nanostructured Carbon Dot-Aptasensor for Chlorpyrifos Detection: Elucidating the Interaction Mechanism for an Environmentally Hazardous Pollutant. Anal. Chim. Acta 2023, 1278, 341711. [Google Scholar] [CrossRef]
- Irfan, M.; Murtaza, G.; Fu, S.; Chen, A.; Qu, F.; Su, X. Molecular Simulation-Guided Aptasensor Design of Robust and Sensitive Lateral Flow Strip for Cadmium Ion Detection. Analyst 2023, 148, 1961–1969. [Google Scholar] [CrossRef]
- Kushwah, M.; Yadav, R.; Berlina, A.N.; Gaur, K.; Gaur, M.S. Development of an Ultrasensitive RGO/AuNPs/SsDNA-Based Electrochemical Aptasensor for Detection of Pb2+. J. Solid. State Electrochem. 2023, 27, 559–574. [Google Scholar] [CrossRef]
- Macagno, J.; Gerlero, G.S.; Satuf, M.L.; Berli, C.L.A. Field-Deployable Aptasensor with Automated Analysis of Stain Patterns for the Detection of Chlorpyrifos in Water. Talanta 2023, 252, 123782. [Google Scholar] [CrossRef]
- Mou, Y.; Zhang, Y.; Lin, X.; Chen, M.; Xia, Y.; Zhu, S.; Wei, C.; Luo, X. Construction of a Novel Fluorescent DNA Aptasensor for the Fast-Response and Sensitive Detection of Copper Ions in Industrial Sewage. Anal. Methods 2023, 15, 3466–3475. [Google Scholar] [CrossRef]
- Muhammad, I.; Murtaza, G.; Zhao, Y.; Rizvi, A.S.; Fu, S.; Su, X.; Qu, F. Exploration of the Interaction of Cadmium and Aptamer by Molecular Simulation and Development of Sensitive Capillary Zone Electrophoresis-Based Aptasensor. J. Chem. Inf. Model. 2023, 63, 2783–2793. [Google Scholar] [CrossRef]
- Su, C.; Dong, C.; Jiang, D.; Shan, X.; Chen, Z. Construction of Electrochemiluminescence Aptasensor for Acetamiprid Detection Using Flower-Liked SnO2 Nanocrystals Encapsulated Ag3PO4 Composite as Luminophore. Microchem. J. 2023, 187, 108374. [Google Scholar] [CrossRef]
- Suo, Z.; Liang, R.; Liu, R.; Wei, M.; He, B.; Jiang, L.; Sun, X.; Jin, H. A Convenient Paper-Based Fluorescent Aptasensor for High-Throughput Detection of Pb2+ in Multiple Real Samples (Water-Soil-Food). Anal. Chim. Acta 2023, 1239, 340714. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Zhu, C.; Du, H.; Mao, J.; Qin, H.; She, Y.; Yan, M. An Interference-Free SERS-Based Aptasensor for Chlorpyrifos Detection. Anal. Chim. Acta 2023, 1268, 341398. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Xiong, X.; Dai, B.; Wang, Y.; Feng, Z.; Luo, H.; Zhu, J.; Shen, G.; Deng, Y.; et al. Development of Fe-N-C Single-Atom Nanozymes Assisted Aptasensor for the Detection of Acetamiprid in Water Samples. Microchem. J. 2023, 193, 109174. [Google Scholar] [CrossRef]
- Yuan, M.; Yang, Y.; Chau, N.T.Q.; Zhang, Q.; Wu, X.; Chen, J.; Wu, Z.; Zhong, H.; Li, Y.; Xu, F. A Novel Fluorescent Aptasensor for Arsenic(III) Detection Based on a Triple-Helix Molecular Switch. Molecules 2023, 28, 2341. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Zeng, T.; Qiao, L.; Zhang, M.; Song, K.; Yin, N.; Tao, Y.; Zhao, Y.; Zhang, C.; et al. Self-Powered Photoelectrochemical Aptasensor Based on Hollow Tubular g-C3N4/Bi/BiVO4 for Tobramycin Detection. Anal. Chim. Acta 2023, 1250, 340951. [Google Scholar] [CrossRef]
- Zhang, Z.; Karimi-Maleh, H. Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles/Titanium Carbide MXene for Lead Detection with Its Reduction Peak as Index Signal. Adv. Compos. Hybrid. Mater. 2023, 6, 68. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, X.; Wu, M.; Shi, M.; Tian, Q.; Fu, L.; Tsai, H.-S.; Xie, W.-F.; Lai, G.; Wang, G.; et al. A Novel Electrochemical Aptasensor Based on Eco-Friendly Synthesized Titanium Dioxide Nanosheets and Polyethyleneimine Grafted Reduced Graphene Oxide for Ultrasensitive and Selective Detection of Ciprofloxacin. Anal. Chim. Acta 2023, 1275, 341607. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, L.; Li, C.; Jiang, Y.; Wang, F. Direct Z-Scheme In2S3/Bi2S3 Heterojunction-Based Photoelectrochemical Aptasensor for Detecting Oxytetracycline in Water. J. Environ. Chem. Eng. 2022, 10, 107404. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, P.; Pu, H.; Sun, D.-W. A Fluorescence Aptasensor Based on Carbon Quantum Dots and Magnetic Fe3O4 Nanoparticles for Highly Sensitive Detection of 17β-Estradiol. Food Chem. 2022, 373, 131591. [Google Scholar] [CrossRef]
- Yang, L.; Ye, X.; Li, X.; Huang, Z.; Chen, F.; Yang, W.; Wang, Z. Colorimetric Aptasensor for Sensitive Detection of Quinclorac Based on Exonuclease III-Assisted Cyclic Release of Phosphorodiamidate Morpholino Oligomer Mimic Enzyme Strategy. Anal. Chim. Acta 2022, 1207, 339815. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Liu, S.; Zhao, G. A Highly Sensitive and Group-Targeting Aptasensor for Total Phthalate Determination in the Environment. J. Hazard. Mater. 2021, 412, 125174. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Q.; Zhou, X.; Wang, R.; Yang, Z. Reusable, Facile, and Rapid Aptasensor Capable of Online Determination of Trace Mercury. Environ. Int. 2021, 146, 106181. [Google Scholar] [CrossRef]
- Fan, L.; Liang, G.; Yan, W.; Guo, Y.; Bi, Y.; Dong, C. A Highly Sensitive Photoelectrochemical Aptasensor Based on BiVO4 Nanoparticles-TiO2 Nanotubes for Detection of PCB72. Talanta 2021, 233, 122551. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, C.; Liang, G.; Yan, W.; Guo, Y.; Bi, Y.; Dong, C. Highly Sensitive Photoelectrochemical Aptasensor Based on MoS2 Quantum Dots/TiO2 Nanotubes for Detection of Atrazine. Sens. Actuators B Chem. 2021, 334, 129652. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, D.; Liu, Y.; Zhan, X.; Lu, Y.; Zhou, P.; Zhang, D. An Electrochemical Aptasensor for Pb2+ Detection Based on Metal–Organic-Framework-Derived Hybrid Carbon. Biosensors 2020, 11, 1. [Google Scholar] [CrossRef]
- Li, L.; Chen, B.; Luo, L.; Liu, X.; Bi, X.; You, T. Sensitive and Selective Detection of Hg2+ in Tap and Canal Water via Self-Enhanced ECL Aptasensor Based on NH2–Ru@SiO2-NGQDs. Talanta 2021, 222, 121579. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Jang, C.-H. A Cationic Surfactant-Decorated Liquid Crystal-Based Aptasensor for Label-Free Detection of Malathion Pesticides in Environmental Samples. Biosensors 2021, 11, 92. [Google Scholar] [CrossRef]
- Su, C.; Song, Q.; Jiang, D.; Dong, C.; Shan, X.; Chen, Z. An Electrochemiluminescence Aptasensor for Diethylstilbestrol Assay Based on Resonance Energy Transfer between Ag3PO4-Cu-MOF(Ii) and Silver Nanoparticles. Analyst 2021, 146, 4254–4260. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, X.; Kou, Q.; Sun, Q.; Wang, Y.; Wu, P.; Yang, L.; Tang, J.; Le, T. An Ultrasensitive Label-Free Fluorescent Aptasensor Platform for Detection of Sulfamethazine. Int. J. Nanomed. 2021, 16, 2751–2759. [Google Scholar] [CrossRef]
- Zou, L.; Li, X.; Lai, Y. Colorimetric Aptasensor for Sensitive Detection of Kanamycin Based on Target-Triggered Catalytic Hairpin Assembly Amplification and DNA-Gold Nanoparticle Probes. Microchem. J. 2021, 162, 105858. [Google Scholar] [CrossRef]
- Chen, X.-X.; Lin, Z.-Z.; Hong, C.-Y.; Yao, Q.-H.; Huang, Z.-Y. A Dichromatic Label-Free Aptasensor for Sulfadimethoxine Detection in Fish and Water Based on AuNPs Color and Fluorescent Dyeing of Double-Stranded DNA with SYBR Green I. Food Chem. 2020, 309, 125712. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Yan, P.; Ouyang, Q.; Dong, J.; Qian, J.; Chen, J.; Xu, L.; Li, H. Co3O4 Nanoparticles/Graphitic Carbon Nitride Heterojunction for Photoelectrochemical Aptasensor of Oxytetracycline. Anal. Chim. Acta 2020, 1125, 299–307. [Google Scholar] [CrossRef]
- Khoshbin, Z.; Housaindokht, M.R.; Verdian, A. A Low-Cost Paper-Based Aptasensor for Simultaneous Trace-Level Monitoring of Mercury (II) and Silver (I) Ions. Anal. Biochem. 2020, 597, 113689. [Google Scholar] [CrossRef]
- Blidar, A.; Feier, B.; Tertis, M.; Galatus, R.; Cristea, C. Electrochemical Surface Plasmon Resonance (EC-SPR) Aptasensor for Ampicillin Detection. Anal. Bioanal. Chem. 2019, 411, 1053–1065. [Google Scholar] [CrossRef]
- Chen, X.-X.; Lin, Z.-Z.; Hong, C.-Y.; Zhong, H.-P.; Yao, Q.-H.; Huang, Z.-Y. Label-Free Fluorescence-Based Aptasensor for the Detection of Sulfadimethoxine in Water and Fish. Appl. Spectrosc. 2019, 73, 294–303. [Google Scholar] [CrossRef]
- Fan, L.; Wang, G.; Liang, W.; Yan, W.; Guo, Y.; Shuang, S.; Dong, C.; Bi, Y. Label-Free and Highly Selective Electrochemical Aptasensor for Detection of PCBs Based on Nickel Hexacyanoferrate Nanoparticles/Reduced Graphene Oxides Hybrids. Biosens. Bioelectron. 2019, 145, 111728. [Google Scholar] [CrossRef]
- Chen, Z.; Li, P.; Cheng, X.; Yang, W.; Wu, Y.; Chen, Q.; Fu, F. Multicolor Aptasensor Based on DNA-Induced Au–Ag Nanorods for Simultaneous and Visual Detection of Inorganic and Organic Mercury. ACS Omega 2019, 4, 15112–15119. [Google Scholar] [CrossRef]
- Saberi, Z.; Rezaei, B.; Ensafi, A.A. Fluorometric Label-Free Aptasensor for Detection of the Pesticide Acetamiprid by Using Cationic Carbon Dots Prepared with Cetrimonium Bromide. Microchim. Acta 2019, 186, 273. [Google Scholar] [CrossRef]
- Yang, R.; Liu, J.; Song, D.; Zhu, A.; Xu, W.; Wang, H.; Long, F. Reusable Chemiluminescent Fiber Optic Aptasensor for the Determination of 17β-Estradiol in Water Samples. Microchim. Acta 2019, 186, 726. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. Selection in Vitro of Single-Stranded DNA Molecules That Fold into Specific Ligand-Binding Structures. Nature 1992, 355, 850–852. [Google Scholar] [CrossRef]
- Jenison, R.D.; Gill, S.C.; Pardi, A.; Polisky, B. High-Resolution Molecular Discrimination by RNA. Science (1979) 1994, 263, 1425–1429. [Google Scholar] [CrossRef]
- Mendonsa, S.D.; Bowser, M.T. In Vitro Evolution of Functional DNA Using Capillary Electrophoresis. J. Am. Chem. Soc. 2004, 126, 20–21. [Google Scholar] [CrossRef]
- Mendonsa, S.D.; Bowser, M.T. In Vitro Selection of High-Affinity DNA Ligands for Human IgE Using Capillary Electrophoresis. Anal. Chem. 2004, 76, 5387–5392. [Google Scholar] [CrossRef]
- Ashley, J.; Ji, K.; Li, S.F.Y. Selection of Bovine Catalase Aptamers Using Non-SELEX. Electrophoresis 2012, 33, 2783–2789. [Google Scholar] [CrossRef]
- Jing, M.; Bowser, M.T. Isolation of DNA Aptamers Using Micro Free Flow Electrophoresis. Lab Chip 2011, 11, 3703–3709. [Google Scholar] [CrossRef]
- Park, S.; Ahn, J.-Y.; Jo, M.; Lee, D.; Lis, J.T.; Craighead, H.G.; Kim, S. Selection and Elution of Aptamers Using Nanoporous Sol-Gel Arrays with Integrated Microheaters. Lab Chip 2009, 9, 1206–1212. [Google Scholar] [CrossRef]
- Daniels, D.A.; Chen, H.; Hicke, B.J.; Swiderek, K.M.; Gold, L. A Tenascin-C Aptamer Identified by Tumor Cell SELEX: Systematic Evolution of Ligands by Exponential Enrichment. Proc. Natl. Acad. Sci. USA 2003, 100, 15416–15421. [Google Scholar] [CrossRef]
- Mi, J.; Liu, Y.; Rabbani, Z.N.; Yang, Z.; Urban, J.H.; Sullenger, B.A.; Clary, B.M. In Vivo Selection of Tumor-Targeting RNA Motifs. Nat. Chem. Biol. 2010, 6, 22–24. [Google Scholar] [CrossRef]
- Nguyen Quang, N.; Perret, G.; Ducongé, F. Applications of High-Throughput Sequencing for In Vitro Selection and Characterization of Aptamers. Pharmaceuticals 2016, 9, 76. [Google Scholar] [CrossRef]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. FluMag-SELEX as an Advantageous Method for DNA Aptamer Selection. Anal. Bioanal. Chem. 2005, 383, 83–91. [Google Scholar] [CrossRef]
Concept | Description |
---|---|
Analyte | Name of environmental contaminant. |
Analyte classification | The environmental contaminants were classified according to their chemical family: metals, pesticides, toxins, industrial chemicals, and pharmaceutical compounds. |
Transducer type | Electrochemical, optical, photoelectrochemical/electroluminescence (opto-electrochemical) transducers. |
Sensitivity | Sensitivity according to the LOD 1 using the following ranges as a basis: low (LOD > 0.1 mg/L), medium (0.1 mg/L > LOD ≥ 1 μg/L), high (1 μg/L > LOD > 0.1 ng/L), and ultra-high (LOD < 0.1 ng/L). |
Water sample type | Water used from a complex matrix: river water, lake water, wastewater, or seawater. |
Test on real sample | Refers to whether the target analytes were found in real water samples, or the compounds were spiked to the water samples. |
Selectivity/specificity | Presence of interferents in the complex matrix and whether the assay was performed: (1) with the target in the presence of the interferents in the same sample (mixed with interferents); (2) whether the target and interferents were analyzed separately (individual); (3) if the target was analyzed with one of the interferents (individual interferents with the target); and 4) if this test was not reported (NR). |
Reproducibility/repeatability | Reported RSD 2. |
Stability | To evaluate the behavior of the aptasensor over time. |
Reusability | Determines if the same device can be used in different periods. |
Sensitivity (LOD) | Transducer | Nanomaterials | Target Classification | Reference |
---|---|---|---|---|
7.11 ag/L | Opto-electrochemical | Graphitic carbon loaded by CoN nanoparticles (CoN/g-C3N4) | Pesticides | [79] |
0.33 pg/L | Electrochemical | CoMoS4 hollow nanospheres | Mycotoxins | [80] |
2.07 pg/L | Electrochemical | Nanocomposite structure of AuNPs/PPy/Ti3C2Tx | Heavy metals | [81] |
0.601 pg/L | Opto-electrochemical | Ru(bpy)32+-doped silica nanoparticle-nitrogen-doped graphene quantum dots (Ru@SiO2-NGQDs) | Heavy metals | [82] |
3.01 fg/L | Opto-electrochemical | (CoAl LDH/g-C3N4) two-dimensional/two-dimensional structure | Pharmaceutical compounds | [83] |
0.742 pg/L | Electrochemical | Cu@carbon nanoneedles (Cu@CNNs) | Heavy metals | [84] |
12.64 pg/L | Opto-electrochemical | NiFe layered double hydroxide (NiFe LDH)/graphitic carbon nitride (g-CN) heterojunction | Pharmaceutical compounds | [85] |
97.8 pg/L | Electrochemical | Nanostructure composed of MoS2 nanosheets and conductive polypyrrole nanoparticles (PPyNPs) | Pharmaceutical compounds | [86] |
3.6 fg/L | Electrochemical | Zeolitic Imidazolate Framework-8 (ZIF-8)-derived Ag@Au core–shell nanoparticles (Ag@Au/ZIF-8) | Heavy metals | [87] |
22 fg/L | Optic | Magnetic beads and gold nanoparticles (AunNPs) | Heavy metals | [88] |
15 pg/L | Optic | Not applicable | Pharmaceutical compounds | [89] |
0.189 pg/L | Electrochemical | Gold-plated coplanar electrode array | Heavy metals | [90] |
0.22 pg/L | Electrochemical | CoNi-based metal–organic framework (MOF), CoxNi3-x,(HITP)2, | Pharmaceutical Compounds | [91] |
29.86 pg/L | Electrochemical | ZnO quantum dots decorated B, N co-doped graphene (BNG/ZnO) | Mycotoxins | [92] |
29.86 pg/L | Electrochemical | 3D cobalt-based oxide modified boron and nitrogen co-doped graphene hydrogel (3D BNG/Co) | Mycotoxins | [93] |
75 fg/L | Opto-electrochemical | Metal–organic framework NH2-MIL-125(Ti) | Pharmaceutical compounds | [94] |
80 fg/L | Electrochemical | Thionine (Thi)-functionalized MoS2-rGO nanocomposite | Industrial chemicals | [95] |
0.20 pg/L | Electrochemical | Nanohybrid of Ag, Ag2O, Ag2S, and ultra-thin MoS2 nanosheet (Ag/Ag2O/Ag2S/MoS2(600)) | Industrial chemicals | [96] |
15 pg/L | Opto-electrochemical | Cu(I) modified carbon nitride (Cu/g-C3N4) | Industrial chemicals | [97] |
18 ag/L | Electrochemical | Multi-walled carbon nanotubes (MWCNT), amino-functionalized magnetite, and gold nanoparticles (NH2-Fe3O4/Au NPs) | Industrial chemicals | [98] |
99.86 pg/L | Opto-electrochemical | N-doped TiO2 nanotubes (N-doped TiO2 NTs) | Industrial chemicals | [99] |
0.22 pg/L | Electrochemical | Co-based metal–organic frameworks (Co-MOF) and terephthalonitrile-based covalent organic framework (TPN-COF) (Co-MOF@TPN-COF) | Pharmaceutical compounds | [100] |
17.4 pg/L | Electrochemical | Nanohybrids of Covalent organic framework (COF) and Ce-based metal organic framework (Ce-MOF) (Ce-MOF@COF hybrid nanostructure) | Pharmaceutical compounds | [101] |
Aptasensor | Contaminant | Selectivity | % Interference | Reference |
---|---|---|---|---|
Sandwich-like AuNPs/PPy/Ti3C2Tx | Pb2+ | Individual and mixed interferents | The aptasensor was used to test the response towards eleven other ions; excluding Pb2+ and Mix, all other ions caused negligible response changes | [81] |
Aptamer linked with AuNPs and Ru@SiO2-NGQD | Hg2+ | Individual and mixed with interferents | Ten different interfering ions. The response caused by individual interfering ions or their mixtures was nearly negligible | [82] |
Urchin-like Cu@carbon nanoneedles modified electrode | Hg2+ | Individual and mixed with interferents | Each of eight interferents with the concentration of 1 μM produced a negligible signal response compared to that generated by 1 nM Hg2+ | [84] |
ZIF-8-derived Ag@Au core–shell nanoparticles (Ag@Au/ZIF-8) | Hg2+ | Individual interferents with the target | The presence of a 100-fold higher concentration of eight metal ions produced negligible effect on the current response of aptasensor | [87] |
CoNi-based metal–organic framework (MOF), CoxNi3−x,(HITP)2 | Enrofloxacin | Individual and mixed with interferents | No significant response was observed for each individual interferent (thirteen antibiotics, small biomolecules, and harmful ions). In addition, the response with a mix is comparable to that of a pure enrofloxacin solution (104.4%) | [91] |
Metal–organic frameworks NH2-MIL-125(Ti) | Diethylstilbestrol | Individual and mixed with interferents | There was no significant difference between the response of the sensor with diethylstilbestrol and the response of three different interferents or their mixture | [94] |
Nanohybrid of Ag, Ag2O, Ag2S, and ultra-thin MoS2 nanosheet | Bisphenol A | Individual and mixed with interferents | The response with nine interferents showed fluctuations of approximately 2.3–4.8%. When all the interferences were mixed with bisphenol A, the obtained value was 106.28% compared to that of pure bisphenol | [96] |
Multi-walled carbon nanotubes (MWCNT), amino-functionalized magnetite, and gold nanoparticles (NH2-Fe3O4/AuNPs) | Bisphenol A | Individual interferents with the target | In the presence of four interferents and bisphenol A, the response is close to that of the bisphenol A alone, with <3% difference in value | [98] |
Nanohybrids of Covalent organic framework (COF) and Ce-based metal organic framework (Ce-MOF) (Ce-MOF@COF hybrid nanostructure) | Oxytetracycline | Individual and mixed with interferents | Negligible response variation in the presence of eleven interferents (some ions, biomolecules, and antibiotics), except for oxytetracycline | [101] |
Graphene oxide (GO) | Tetracycline | Individual and mixed with interferents | The system responded only to tetracycline, whereas other analogs (eight antibiotics) did not produce significant signal changes | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynoso, E.C.; Sfragano, P.S.; González-Perea, M.; Palchetti, I.; Torres, E. Aptasensors for the Detection of Environmental Contaminants of High Concern in Water Bodies: A Systematic Review. Chemosensors 2024, 12, 59. https://doi.org/10.3390/chemosensors12040059
Reynoso EC, Sfragano PS, González-Perea M, Palchetti I, Torres E. Aptasensors for the Detection of Environmental Contaminants of High Concern in Water Bodies: A Systematic Review. Chemosensors. 2024; 12(4):59. https://doi.org/10.3390/chemosensors12040059
Chicago/Turabian StyleReynoso, Eduardo Canek, Patrick Severin Sfragano, Mario González-Perea, Ilaria Palchetti, and Eduardo Torres. 2024. "Aptasensors for the Detection of Environmental Contaminants of High Concern in Water Bodies: A Systematic Review" Chemosensors 12, no. 4: 59. https://doi.org/10.3390/chemosensors12040059
APA StyleReynoso, E. C., Sfragano, P. S., González-Perea, M., Palchetti, I., & Torres, E. (2024). Aptasensors for the Detection of Environmental Contaminants of High Concern in Water Bodies: A Systematic Review. Chemosensors, 12(4), 59. https://doi.org/10.3390/chemosensors12040059