A High-Precision Monitoring Method Based on SVM Regression for Multivariate Quantitative Analysis of PID Response to VOC Signals
Abstract
:1. Introduction
2. Relate Work
2.1. Monitoring Method for VOCs Based on PID
2.2. Quantitative Analysis Method for PID Signal
3. PID Selection and Problem Statement
3.1. Calibration of PID for Various VOCs
3.2. PID Selection in the Work
3.3. Existing Problems in VOC Monitoring with PID
4. Analysis of VOC Concentration Based on Traditional SVR
4.1. SVR
4.2. Analysis of VOC Concentration Based on Traditional SVR
5. PID Calibration Model
5.1. SVR Based on PCA of PID Signal Features
5.1.1. Subsubsection
- (1)
- Perform zero-mean normalization on the sample set of dimensionality d and
- (2)
- Compute the covariance matrix of vector O;
- (3)
- Use the method of singular value decomposition to obtain the eigenvalues and eigenvectors of the covariance matrix .
- (4)
- Take the eigenvectors corresponding to the top v eigenvalues to form a new matrix, where v should be smaller than n.
- (5)
- Obtain a new low-dimensional sample set.
- (6)
- Calculate the contribution rate of each principal component and the cumulative contribution rate.
5.1.2. SVR after PCA of PID Signal Features
5.2. Proposed Method Based on PCA-GA-SVR
5.2.1. SVR after PCA of PID Signal Features
- (1)
- The dataset consisting of 84 group different concentrations of PID response to VOCs was split into an 80% training set and a 20% testing set.
- (2)
- Normalize the input of the training and testing sets.
- (3)
- Set the parameters of the genetic algorithm, such as the population size, iteration count, crossover probability, mutation probability, etc. Here, the chromosome dimension is set to 2, where the two numbers in the chromosome represent δ and C.
- (4)
- Initialize the population by initializing each chromosome and calculating its objective function value.
- (5)
- Begin iterative loop.
- (6)
- Selection operator.
- (7)
- Crossover and mutation operators (simulated binary crossover and polynomial mutation).
- (8)
- Recalculate the objective function value for the updated chromosomes, where the objective function is the minimum mean squared error.
- (9)
- Update the optimal objective of the global best chromosome.
- (10)
- Proceed to the next iteration until the maximum iteration count is reached.
- (11)
- Export the global best chromosome and C values, and plot the iteration curve.
5.2.2. SVR after PCA of PID Signal Features
5.2.3. Results
5.2.4. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, C. Overview of TVOC and Indoor Air Quality; Renesas Electronics Corporation: Tokyo, Japan, 2018. [Google Scholar]
- Lagoudi, A.; Lois, E.; Fragioudakis, K.; Karavanas, A.; Loizidou, M. Design of an inventory system for the volatile organic compounds, emitted by various activities. Environ. Sci. Technol. 2001, 35, 1982–1988. [Google Scholar] [CrossRef]
- Li, X.Q.; Zhang, L.; Yang, Z.Q.; He, Z.Q.; Wang, P.; Yan, Y.F.; Ran, J.Y. Hydrophobic modified activated carbon using PDMS for the adsorption of VOCs in humid condition. Sep. Purif. Technol. 2020, 239, 116517. [Google Scholar] [CrossRef]
- Kuranchie, F.A.; Angnunavuri, P.N.; Attiogbe, F.; Nerquaye-Tetteh, E.N. Occupational exposure of benzene, toluene, ethylbenzene and xylene (BTEX) to pump attendants in Ghana: Implications for policy guidance. Cogent Environ. Sci. 2019, 5, 1603418. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, B.; Yang, M.R.; Xiao, G.; Xiao, H.; Dai, X.R. Bibliometrics and Knowledge Map Analysis of Research Progress on Biological Treatments for Volatile Organic Compounds. Sustainability 2023, 15, 9274. [Google Scholar] [CrossRef]
- Liu, H.; Meng, G.; Deng, Z.; Li, M.; Chang, J.; Dai, T.; Fang, X. Progress in Research on VOC Molecule Recognition by Semiconductor Sensors. Acta Phys.-Chim. Sin. 2022, 38, 2008018. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, G.; Zhong, Q.; Zhao, J.B.; Yang, K. Status and needs research for on-line monitoring of VOCs emissions from stationary sources. Huan Jing Ke Xue Huanjing Kexue 2013, 34, 4764–4770. [Google Scholar] [PubMed]
- Meng, F.; Zheng, H.; Chang, Y.; Zhao, Y.; Li, M.; Wang, C.; Sun, Y.; Liu, J. One-step synthesis of Au/SnO2/RGO nanocomposites and their VOC sensing properties. IEEE Trans. Nanotechnol. 2018, 172, 212–219. [Google Scholar] [CrossRef]
- Meng, F.; Li, X.; Yuan, Z.; Lei, Y.; Qi, T.; Li, J. Ppb-Level Xylene Gas Sensors based on Co3O4 Nanoparticles coated Reduced Graphene Oxide(rGO) Nanosheets Operating at Low Temperature. IEEE Trans. Instrum. Meas. 2021, 70, 9511510. [Google Scholar] [CrossRef]
- Meng, F.; Shi, X.; Yuan, Z.; Ji, H.; Qin, W.; Shen, Y.; Xing, C. Detection of Four Alcohol Homologue Gases by ZnO Gas Sensor in Dynamic Interval Temperature Modulation Mode. Sens. Actuators B Chem. 2022, 350, 130867. [Google Scholar] [CrossRef]
- Termonia, A.; Termonia, M. Characterisation and on-site monitoring of odorous organic compounds in the environment of a landfill site. Int. J. Environ. Anal. Chem. 1999, 73, 43–57. [Google Scholar] [CrossRef]
- Je, C.-h.; Stone, R.; Oberg, S.G. Development and application of a multi-channel monitoring system for near real-time VOC measurement in a hazardous waste management facility. Sci. Total Environ. 2007, 382, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Manes, G.; Collodi, G.; Gelpi, L.; Fusco, R.; Ricci, G.; Manes, A.; Passafiume, M. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure. Sensors 2016, 16, 121. [Google Scholar] [CrossRef]
- Oka, K.; Iizuka, A.; Inoue, Y.; Mizukoshi, A.; Noguchi, M.; Yamasaki, A.; Yanagisawa, Y. Development of a Combined Real Time Monitoring and Integration Analysis System for Volatile Organic Compounds (VOCs). Int. J. Environ. Res. Public Health 2010, 7, 4100–4110. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Qian, K.; Wang, C. Design and Application of a VOC-Monitoring System Based on a ZigBee Wireless Sensor Network. IEEE Sens. J. 2015, 15, 2255–2268. [Google Scholar] [CrossRef]
- Wang, J.; Hao, X.W.; Dong, J.G.; Xiong, J.J.; Hong, Y.P. Design of high precision photoionization detector. Infrared Laser Eng. 2020, 49, 248–255. [Google Scholar]
- Li, H. VOCs Detection Based on Photoionization Technology. Ph.D. Thesis, Chongqing University of Posts and Telecommunications, Chongqing, China, 2020. [Google Scholar]
- Wang, L.; Cheng, Y.; Gopalan, S.; Luo, F.; Amreen, K.; Singh, R.K.; Goel, S.; Lin, Z.; Naidu, R. Review and Perspective: Gas Separation and Discrimination Technologies for Current Gas Sensors in Environmental Applications. ACS Sens. 2023, 8, 1373–1390. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Feng, X.; Dong, C.; Jiao, M. Study on Denoising Method of Photoionization Detector Based on Wavelet Packet Transform. Chemosensors 2023, 11, 146. [Google Scholar] [CrossRef]
- Roy, A.; Chakraborty, S. Support vector machine in structural reliability analysis: A review. Reliab. Eng. Syst. Saf. 2023, 233, 109126. [Google Scholar] [CrossRef]
- Healy, R.M.; Wang, J.M.; Karellas, N.S.; Todd, A.; Sofowote, U.; Su, Y.; Munoz, A. Assessment of a passive sampling method and two on-line gas chromatographs for the measurement of benzene, toluene, ethylbenzene and xylenes in ambient air at a highway site. Atmos. Pollut. Res. 2019, 10, 1123–1127. [Google Scholar] [CrossRef]
- Shi, J.; Teh, J. Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion. Appl. Energy 2024, 353, 122146. [Google Scholar] [CrossRef]
- Zhu, H.; Nidetz, R.; Zhou, M.; Lee, J.; Buggaveeti, S.; Kurabayashi, K.; Fan, X. Flow-through microfluidic photoionization detectors for rapid and highly sensitive vapor detection. Lab A Chip 2015, 15, 3021–3029. [Google Scholar] [CrossRef] [PubMed]
- Bilek, J.; Marsolek, P.; Bilek, O.; Bucek, P. Field Test of Mini Photoionization Detector-Based Sensors-Monitoring of Volatile Organic Pollutants in Ambient Air. Environments 2022, 9, 49. [Google Scholar] [CrossRef]
- Liu, R.Y.; Hu, H. Design of Photoionization Sensor for VOC Gas Detection. Instrum. Tech. Sens. 2020, 7, 1–5. [Google Scholar]
- Zhou, Q.; Zhang, S.; Zhang, X.; Ma, X.; Zhou, W. Development of a Novel Micro Photoionization Detector for Rapid Volatile Organic Compounds Measurement. Appl. Bionics Biomech. 2018, 2018, 5651315. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Khanwelkar, D.R.; Maiti, J. A semi-automated coding scheme for occupational injury data: An approach using Bayesian decision support system. Expert Syst. Appl. 2024, 237, 121610. [Google Scholar] [CrossRef]
- Rymarczyk, T.; Klosowski, G.; Hola, A.; Sikora, J.; Tchorzewski, P.; Skowron, L. Optimising the use of Machine learning algorithms in electrical tomography of building Walls: Pixel oriented ensemble approach. Measurement 2022, 188, 110581. [Google Scholar] [CrossRef]
- Ding, S.; Zhao, X.; Zhang, J.; Zhang, X.; Xue, Y. A review on multi-class TWSVM. Artif. Intell. Rev. 2019, 52, 775–801. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, W. Sustainable development early warning and financing risk management of resource-based industrial clusters using optimization algorithms. J. Enterp. Inf. Manag. 2022, 35, 1374–1391. [Google Scholar] [CrossRef]
- Qiao, Y.; Luo, J.; Cui, T.; Liu, H.; Tang, H.; Zeng, Y.; Liu, C.; Li, Y.; Jian, J.; Wu, J.; et al. Soft Electronics for Health Monitoring Assisted by Machine Learning. Nano-Micro Lett. 2023, 15, 66. [Google Scholar] [CrossRef]
Chemicals | Response Coefficient | Chemicals | Response Coefficient | Chemicals | Response Coefficient |
---|---|---|---|---|---|
benzene | 1.00 | acrolein | 7.36 | acetone | 2.26 |
isobutanol | 8.87 | n-butyl | 6.42 | isobutene | 1.887 |
cyclohexane | 2.83 | butyl acetate | 4.53 | butadiene | 1.30 |
styrene | 0.75 | 2-dimethylbenzene | 1.02 | propylene oxide | 12.30 |
phenol | 1.887 | naphthalene | 0.70 | chlorobenzene | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Liu, Z.; Ren, Y.; Dong, C. A High-Precision Monitoring Method Based on SVM Regression for Multivariate Quantitative Analysis of PID Response to VOC Signals. Chemosensors 2024, 12, 74. https://doi.org/10.3390/chemosensors12050074
Feng X, Liu Z, Ren Y, Dong C. A High-Precision Monitoring Method Based on SVM Regression for Multivariate Quantitative Analysis of PID Response to VOC Signals. Chemosensors. 2024; 12(5):74. https://doi.org/10.3390/chemosensors12050074
Chicago/Turabian StyleFeng, Xiujuan, Zengyuan Liu, Yongjun Ren, and Chengliang Dong. 2024. "A High-Precision Monitoring Method Based on SVM Regression for Multivariate Quantitative Analysis of PID Response to VOC Signals" Chemosensors 12, no. 5: 74. https://doi.org/10.3390/chemosensors12050074
APA StyleFeng, X., Liu, Z., Ren, Y., & Dong, C. (2024). A High-Precision Monitoring Method Based on SVM Regression for Multivariate Quantitative Analysis of PID Response to VOC Signals. Chemosensors, 12(5), 74. https://doi.org/10.3390/chemosensors12050074