Hydrothermally Synthesized Cerium Phosphate with Functionalized Carbon Nanofiber Nanocomposite for Enhanced Electrochemical Detection of Hypoxanthine
Abstract
:1. Introduction
2. Experimental Methods
2.1. Preparation of f-CNF
2.2. Synthesis of Cerium Phosphate (CePO4)
2.3. Preparation of CePO4@f-CNF
2.4. Preparation of Modified Glassy Carbon Electrode (GCE)
2.5. Real Sample Analysis
3. Results and Discussion
3.1. Choice of Material
3.2. X-ray Diffraction (XRD) Crystallographic Phase
3.3. FTIR Analysis
3.4. Raman Analysis
3.5. Morphological Analysis
3.6. Electrochemical Measurement
Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV)
3.7. Electrochemical Behaviors of Electrodes
3.7.1. Different Modified Electrodes towards Hypoxanthine
3.7.2. Effect of Different Loadings
3.7.3. Effect of Various pH
3.7.4. Different Concentrations of HXA and Scan Rates
3.8. Determination of Calibration Plot and Limit of Detection
3.9. Selectivity Studies
3.10. Practical Applicability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garg, D.; Singh, M.; Monika, N.V. Review on recent advances in fabrication of enzymatic and chemical sensors for hypoxanthine. Food Chem. 2022, 375, 131839. [Google Scholar] [CrossRef]
- King, M.E.; Honeysett, J.M.; Howell, S.B. Regulation of de novo purine synthesis in human bone marrow mononuclear cells by hypoxanthine. J. Clin. Investig. 1983, 72, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Dey, B.; Ahmad, W.; Sarkhel, G.; Lee, G.H.; Choudhury, A. Fabrication of niobium metal organic frameworks anchored carbon nanofiber hybrid film for simultaneous detection of xanthine, hypoxanthine and uric acid. Microchem. J. 2023, 186. [Google Scholar] [CrossRef]
- Nakatani, H.S.; Santos, L.V.D.; Pelegrine, C.P.; Gomes, S.T.M.; Matsushita, M.; de Souza, N.E.; Visentainer, J.V. Biosensor Based on Xanthine Oxidase for Monitoring Hypoxanthine in Fish Meat. Am. J. Biochem. Biotechnol. 2005, 1, 85–89. [Google Scholar] [CrossRef]
- Torres, R.J.; Prior, C.; Garcia, M.G.; Puig, J.G. A review of the implication of hypoxanthine excess in the physiopathology of Lesch–Nyhan disease. Nucleosides Nucleotides Nucleic Acids 2016, 35, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Dong, H.; Zhou, Y.; Chen, Y.; Hao, W.; Zhang, Z.; Hao, Y.; Liu, L.; Wang, X.; Xu, M. Simultaneous and Ratiometric Electrochemical Determination of Uric Acid and Hypoxanthine Based on In Situ Carbonized Polydopamine Graphene Paper. ACS Appl. Nano Mater. 2023, 6, 9268–9275. [Google Scholar] [CrossRef]
- Peter, J.N.; Ulse, N.P.; Ole, T.; Num, R.; Eph, S.T.; Oyasjet, A.; Oi, A.D. Changes in Oxypurine Concentrations in Vitreous Humor of Pigs during Hypoxemia and Post-Mortem. Pediatr. Res. 1990, 28, 482–484. [Google Scholar]
- Cao, Y.; Song, Y.; Wei, T.; Feng, T.; Li, M.; Xue, C.; Xu, J. MnO2 in-situ coated upconversion nanosystem for turn-on fluorescence detection of hypoxanthine in aquatic products. Food Chem. 2024, 431, 137131. [Google Scholar] [CrossRef]
- Mustafa, F.; Andreescu, S. Paper-Based Enzyme Biosensor for One-Step Detection of Hypoxanthine in Fresh and Degraded Fish. ACS Sens. 2020, 5, 4092–4100. [Google Scholar] [CrossRef]
- Pu-Werman, G.J.; Shaikh, B.; Hallmark, M.R.; Sawyer, C.G.; Hixson, C.V.; Perini, F. Simultaneous Analysis of Substrates, Products, and Inhibitors of Xanthine Oxidase by High-Pressure Liquid Chromatography and Gas Chromatography. Anal. Biochem. 1979, 98, 18–26. [Google Scholar]
- Khandagale, D.D.; Wang, S.F. Fabrication of tin sulfide@functionalized carbon nanofiber composites for the electrochemical detection of the oxidative stress biomarker trolox. New J. Chem. 2023, 47, 14933–14942. [Google Scholar] [CrossRef]
- Xia, Y.; Calahoo, C.; Rodrigues, B.P.; Griebenow, K.; Graewe, L.; Wondraczek, L. Structure and properties of cerium phosphate and silicophosphate glasses. J. Am. Ceram. Soc. 2023, 106, 2808–2819. [Google Scholar] [CrossRef]
- Feng, N.; Liu, Y.; Dai, X.; Wang, Y.; Guo, Q.; Li, Q. Advanced applications of cerium oxide based nanozymes in cancer. RSC Adv. 2022, 12, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Altass, H.M.; Khder, A.S.; Ahmed, S.A.; Morad, M.; Alsabei, A.A.; Jassas, R.S.; Althagafy, K.; Ahmed, A.I.; Salama, R.S. Highly efficient, recyclable cerium-phosphate solid acid catalysts for the synthesis of tetrahydrocarbazole derivatives by Borsche–Drechsel cyclization. React. Kinet. Mech. Catal. 2021, 134, 143–161. [Google Scholar] [CrossRef]
- Kushwaha, A.; Singh, G.; Sharma, M. Designing of cerium phosphate nanorods decorated reduced graphene oxide nanostructures as modified electrode: An effective mode of dopamine sensing. Microchem. J. 2021, 166, 106224. [Google Scholar] [CrossRef]
- Kim, S.; Choi, M.; Park, J. Cerium-Doped Oxide-Based Materials for Energy and Environmental Applications. Crystals 2023, 13, 1631. [Google Scholar] [CrossRef]
- Yoon, J.H.; Jinsoo, B.; Cho, I.; Vinodh, R.; Pollet, B.G.; Babu, R.S.; Kim, H.J.; Kim, S. Novel Supercapacitor Electrode Derived from One Dimensional Cerium Hydrogen Phosphate (1D-Ce(HPO4)2·xH2O). Molecules 2022, 27, 7691. [Google Scholar] [CrossRef] [PubMed]
- Varun, D.N.; Manjunatha, J.G.; Hareesha, N.; Sandeep, S.; Mallu, P.; Karthik, C.S.; Prinith, N.S.; Sreeharsha, N.; Asdaq, S.M.B. Simple and sensitive electrochemical analysis of riboflavin at functionalized carbon nanofiber modified carbon nanotube sensor. Monatshefte Für Chem.-Chem. Mon. 2021, 152, 1183–1191. [Google Scholar] [CrossRef]
- Marenco, A.J.; Pillai, R.G.; Harris, K.D.; Chan, N.W.; Jemere, A.B. Electrochemical Determination of Fentanyl Using Carbon Nanofiber-Modified Electrodes. ACS Omega 2024, 9, 17592–17601. [Google Scholar] [CrossRef]
- Bharathi, P.; Wang, S.F. Strontium phosphate/functionalized carbon nanofiber composite: A promising electrode material for amperometric detection of flufenamic acid. Process Saf. Environ. Prot. 2023, 178, 642–651. [Google Scholar] [CrossRef]
- Periyasamy, S.; Lee, C.H.; Fu, C.C.; Liu, S.H.; Juang, R.S. Ultrasound-assisted synthesis of barium tungstate encapsulated carbon nanofiber composite for real-time sensing of p-cresol in human urine samples. Microchem. J. 2021, 166, 106239. [Google Scholar]
- Cui, L.; Yang, Y.; Jiang, S.; Cao, X.; Chu, W.; Chen, J.; Sun, B.; Ren, K.; Zhang, C.Y. Exogenous Co-Reactant-Free Electrochemiluminescent Biosensor for Ratiometric Measurement of α-Glucosidase Based on a ZIF-67-Regulated Hydrogen-Bonded Organic Framework. ACS Sens. 2024, 9, 1023–1030. [Google Scholar] [CrossRef]
- Dalapati, R.; Biswas, S. A pyrene-functionalized metal–organic framework for nonenzymatic and ratiometric detection of uric acid in biological fluid via conformational change. Inorg. Chem. 2019, 58, 5654–5663. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, K.; Mukundan, P.; Pillai, P.K.; Nair, V.R.; Warrier, K.G.K. High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route. Chem. Mater. 2004, 16, 2700–2705. [Google Scholar] [CrossRef]
- Zhu, K.; Chao, X.F.; Liu, Y.; Luo, Y.H.; Zhang, Q.Y.; Zhao, Z.A.; Zhu, Q.; Chen, F.Y.; Zhang, D.E. Facial Construction of CePO4-Reduced Graphene Oxide Composite for Enhanced Electrochemical Detection of Dopamine and Acetaminophen. J. Electrochem. Soc. 2022, 169, 067505. [Google Scholar] [CrossRef]
- Navarro-Jaén, S.; Romero-Sarria, F.; Centeno, M.A.; Laguna, O.H.; Odriozola, J.A. Phosphate-type supports for the design of WGS catalysts. Appl. Catal. B 2019, 244, 853–862. [Google Scholar] [CrossRef]
- Kirubanithy, M.; Irudayaraj, A.A.; Raj, A.D.; Manikandan, S. Synthesis, characterization and photoluminescence behaviours of CePO4 and Tb-doped CePO4 nanostructures. Mater. Today Proc. 2015, 2, 4344–4347. [Google Scholar] [CrossRef]
- Asuvathraman, R.; Gnanasekar, K.I.; Clinsha, P.C.; Ravindran, T.R.; Kutty, K.G. Investigations on the charge compensation on Ca and U substitution in CePO4 by using XPS, XRD and Raman spectroscopy. Ceram. Int. 2015, 41, 3731–3739. [Google Scholar] [CrossRef]
- Sriram, B.; Govindasamy, M.; Wang, S.F.; Joseph, X.B. A ternary nanocomposite based on nickel (iii) oxide@ f-CNF/rGO for efficient electrochemical detection of an antipsychotic drug (Klonopin) in biological samples. New J. Chem. 2020, 44, 10250–10257. [Google Scholar] [CrossRef]
- Subbiah, K.D.; Nesakumar, N.; Kulandaisamy, A.J.; Rayappan, J.B. Ferricyanide/reduced graphene oxide as electron mediator for the electrochemical detection of methanol in canned citrus sinensis and citrus limetta. Sens. Actuators B Chem. 2017, 248, 708–717. [Google Scholar] [CrossRef]
- Wei, M.J.; Lu, X.Y.; Li, J.; Kong, F.Y.; Zhou, J.; Wang, Z.X.; Wang, W. Coupling highly conductive covalent organic framework with nitrogen doped carbon nanotubes enables simultaneous and sensitive quantification of xanthine and hypoxanthine. Microchem. J. 2023, 194, 109205. [Google Scholar] [CrossRef]
- Ramanathan, S.; Elanthamilan, E.; Obadiah, A.; Durairaj, A.; Santhoshkumar, P.; Merlin, J.P.; Ramasundaram, S.; Vasanthkumar, S. Electrochemical Detection of Trace Amounts of Arsenic (III) in Poultry Using a Graphene Oxide-Bis(2-(4,5-diphenyl-1H-imidazol-2-yl)phenoxy)Cobalt Composite Modified Electrode. J. Electron. Mater. 2019, 48, 4498–4506. [Google Scholar] [CrossRef]
- Cecilia, C.; Palchetti, I.; Mascini, M.; Parenti, A. Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem. 2000, 71, 553–562. [Google Scholar]
- Zhao, C.; Chen, M.; Liu, X.; Yuan, W.; Li, K.; Wang, Y.; Chen, C.; Zhang, M.; Dong, Y.; Xiao, Y.; et al. Direct single-molecule detection of CoA-SH and ATP by the membrane proteins TMEM120A and TMEM120B. Nanoscale 2024, 16, 6087–6094. [Google Scholar] [CrossRef] [PubMed]
- Vishnu, N.; Gandhi, M.; Rajagopal, D.; Kumar, A.S. Pencil graphite as an elegant electrochemical sensor for separation–free and simultaneous sensing of hypoxanthine, xanthine and uric acid in fish samples. Anal. Methods 2017, 9, 2265–2274. [Google Scholar] [CrossRef]
- Lavanya, N.; Sekar, C.; Murugan, R.; Ravi, G. An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles. Mater. Sci. Eng. C 2016, 65, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.S.; Swetha, P. Ru(DMSO)4Cl2 nano–aggregated Nafion membrane modified electrode for simultaneous electrochemical detection of hypoxanthine, xanthine and uric acid. J. Electroanal. Chem. 2010, 642, 135–142. [Google Scholar] [CrossRef]
- Kumar, S.A.; Shanmugam, R. Simple method for simultaneous detection of uric acid, xanthine and hypoxanthine in fish samples using a glassy carbon electrode modified with as commercially received multiwalled carbon nanotubes. Anal. Methods 2011, 3, 2088–2094. [Google Scholar] [CrossRef]
- Thangaraj, R.; Kumar, A.S. Graphitized mesoporous carbon modified glassy carbon electrode for selective sensing of xanthine, hypoxanthine and uric acid. Anal. Methods 2012, 4, 2162–2171. [Google Scholar] [CrossRef]
- Dou, Z.Y.; Cui, L.L.; He, X.Q. Electrochimical determination of uric acid, xanthine and hypoxanthine by poly(xylitol) modified glassy carbon electrode. J. Cent. South Univ. 2014, 21, 870–876. [Google Scholar] [CrossRef]
- Zen, M.; Lai, Y.; Yang, H.; Kumar, A.S. Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite–coated screen–printed electrode. Sens. Actuators B Chem. 2002, 84, 237–244. [Google Scholar] [CrossRef]
- Raj, M.A.; John, S.A. Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal Chim Acta 2013, 771, 14–20. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasare, P.K.; Wang, S.-F. Hydrothermally Synthesized Cerium Phosphate with Functionalized Carbon Nanofiber Nanocomposite for Enhanced Electrochemical Detection of Hypoxanthine. Chemosensors 2024, 12, 84. https://doi.org/10.3390/chemosensors12050084
Kasare PK, Wang S-F. Hydrothermally Synthesized Cerium Phosphate with Functionalized Carbon Nanofiber Nanocomposite for Enhanced Electrochemical Detection of Hypoxanthine. Chemosensors. 2024; 12(5):84. https://doi.org/10.3390/chemosensors12050084
Chicago/Turabian StyleKasare, Prashant K., and Sea-Fue Wang. 2024. "Hydrothermally Synthesized Cerium Phosphate with Functionalized Carbon Nanofiber Nanocomposite for Enhanced Electrochemical Detection of Hypoxanthine" Chemosensors 12, no. 5: 84. https://doi.org/10.3390/chemosensors12050084
APA StyleKasare, P. K., & Wang, S. -F. (2024). Hydrothermally Synthesized Cerium Phosphate with Functionalized Carbon Nanofiber Nanocomposite for Enhanced Electrochemical Detection of Hypoxanthine. Chemosensors, 12(5), 84. https://doi.org/10.3390/chemosensors12050084