Thermal Modulation of Resistance Gas Sensor Facilitates Recognition of Fragrance Odors
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Material Characteration
3.2. Isothermal Response
3.3. Pulse Heating Response
3.4. Odor Recognition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jarboui, A. Application of Electrochemical Sensors as an Alternative Tool for Perfume Evaluation. Master’s Thesis, Polytechnic Institute of Bragança, Bragança, Portugal, 2019. [Google Scholar]
- Chen, H.; Huo, D.; Zhang, J. Gas Recognition in E-Nose System: A Review. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Branca, A.; Simonian, P.; Ferrante, M.; Novas, E.; Negri, R.M. Electronic nose based discrimination of a perfumery compound in a fragrance. Sens. Actuators B Chem. 2003, 92, 222–227. [Google Scholar] [CrossRef]
- James, D.; Scott, S.; Ali, Z.; O’Hare, W.T. Chemical sensors for electronic nose systems. Microchim. Acta 2005, 149, 1–17. [Google Scholar] [CrossRef]
- Paliwal, A.; Sharma, A.; Tomar, M.; Gupta, V. Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sens. Actuators B-Chem. 2017, 250, 679–685. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Zhao, Y.; Bai, L.; Zhang, F. High-Sensitivity Optical Fiber Gas Sensors Based on Novel Optical Devices. Instrum. Sci. Technol. 2013, 41, 187–201. [Google Scholar] [CrossRef]
- Li, H.; Mu, X.; Yang, Y.; Mason, A.J. Low Power Multimode Electrochemical Gas Sensor Array System for Wearable Health and Safety Monitoring. IEEE Sens. J. 2014, 14, 3391–3399. [Google Scholar] [CrossRef]
- Wan, H.; Yin, H.; Lin, L.; Zeng, X.; Mason, A.J. Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring. Sens. Actuators B-Chem. 2018, 255, 638–646. [Google Scholar] [CrossRef]
- Jakubik, W.P. Surface acoustic wave-based gas sensors. Thin Solid Film. 2011, 520, 986–993. [Google Scholar] [CrossRef]
- Gao, F.; Boussaid, F.; Xuan, W.; Tsui, C.-Y.; Bermak, A. Dual Transduction Surface Acoustic Wave Gas Sensor for VOC Discrimination. IEEE Electron Device Lett. 2018, 39, 1920–1923. [Google Scholar] [CrossRef]
- Compagnone, D.; Faieta, M.; Pizzoni, D.; Di Natale, C.; Paolesse, R.; Van Caelenberg, T.; Beheydt, B.; Pittia, P. Quartz crystal microbalance gas sensor arrays for the quality control of chocolate. Sens. Actuators B-Chem. 2015, 207, 1114–1120. [Google Scholar] [CrossRef]
- Hua, Z.; Li, Y.; Zeng, Y.; Wu, Y. A theoretical investigation of the power-law response of metal oxide semiconductor gas sensors I: Schottky barrier control. Sens. Actuators B-Chem. 2018, 255, 1911–1919. [Google Scholar] [CrossRef]
- Schultealbert, C.; Baur, T.; Schütze, A.; Böttcher, S.; Sauerwald, T. A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors. Sens. Actuators B-Chem. 2017, 239, 390–396. [Google Scholar] [CrossRef]
- Wu, R.; Tian, L.; Li, H.; Liu, H.; Luo, J.; Tian, X.; Hua, Z.; Wu, Y.; Fan, S. A selective methane gas sensor based on metal oxide semiconductor equipped with an on-chip microfilter. Sens. Actuators B-Chem. 2022, 359, 131557. [Google Scholar] [CrossRef]
- Kuske, M.; Padilla, M.; Romain, A.C.; Nicolas, J.; Rubio, R.; Marco, S. Detection of diverse mould species growing on building materials by gas sensor arrays and pattern recognition. Sens. Actuators B-Chem. 2006, 119, 33–40. [Google Scholar] [CrossRef]
- Badawi, D.; Bassi, I.; Ozev, S.; Enis, A. Cetin Deep-Learning-Based Gas Leak Source Localization From Sparse Sensor Data. IEEE Sens. J. 2022, 22, 20999–21008. [Google Scholar] [CrossRef]
- Palme, T.; Fast, M.; Thern, M. Gas turbine sensor validation through classification with artificial neural networks. Appl. Energy 2011, 88, 3898–3904. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, Y.; Zhuang, Y.; Zhao, C.; Wang, F. Rapid Gas Sensing Based on Pulse Heating and Deep Learning. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Gainesville, FL, USA, 25–29 January 2021; pp. 438–441. [Google Scholar]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Yan, W.; Zhuang, X.; Ng, K.W.; Cheng, X. Sensitive and low-power metal oxide gas sensors with a low-cost microelectromechanical heater. ACS Omega 2021, 6, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Yan, W.; Ling, M.; Liang, C. High-response H2 sensing performances of ZnO nanosheets modulated by oxygen vacancies. Inorg. Chem. Front. 2023, 10, 3255–3262. [Google Scholar] [CrossRef]
- Suematsu, K.; Sasaki, M.; Ma, N.; Yuasa, M.; Shimanoe, K. Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sens. 2016, 1, 913–920. [Google Scholar] [CrossRef]
- Yan, W.; Chen, Y.; Zeng, X.; Wu, G.; Jiang, W.; Wei, D.; Ling, M.; Ng, K.W.; Qin, Y. Ultrasensitive ethanol sensor based on segregated ZnO-In2O3 porous nanosheets. Appl. Surf. Sci. 2021, 535, 147697. [Google Scholar] [CrossRef]
- Yan, W.; Xu, H.; Ling, M.; Zhou, S.; Qiu, T.; Deng, Y.; Zhao, Z.; Zhang, E. MOF-derived porous hollow Co3O4@ ZnO cages for high-performance MEMS trimethylamine sensors. ACS Sens. 2021, 6, 2613–2621. [Google Scholar] [CrossRef] [PubMed]
- Acharyya, S.; Nag, S.; Kimbahune, S.; Ghose, A.; Pal, A.; Guha, P.K. Selective Discrimination of VOCs Applying Gas Sensing Kinetic Analysis over a Metal Oxide-Based Chemiresistive Gas Sensor. Acs Sens. 2021, 6, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Luo, W.; Li, J.; Li, M. Highly Selective MEMS Gas Sensor to Detect H2 and NH3 with Tunable Discrimination. IEEE Sens. J. 2024, 24, 7473–7481. [Google Scholar] [CrossRef]
- Suematsu, K.; Harano, W.; Oyama, T.; Shin, Y.; Watanabe, K.; Shimanoe, K. Pulse-driven semiconductor gas sensors toward ppt level toluene detection. Anal. Chem. 2018, 90, 11219–11223. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Chen, Z.; Song, Z.; Wang, C.; Wan, Z.A.; Chan, C.L.J.; Chen, Z.; Ye, W.; Fan, Z. Microheater integrated nanotube array gas sensor for parts-per-trillion level gas detection and single sensor-based gas discrimination. ACS Nano 2022, 16, 10968–10978. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Cho, I.; Park, J.; Jeong, J.; Lee, K.; Lee, B.; Del Orbe Henriquez, D.; Yoon, K.; Park, I. High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 2022, 7, 430–440. [Google Scholar] [CrossRef]
- Muhuri, P.S.; Chatterjee, P.; Yuan, X.; Roy, K.; Esterline, A. Using a long short-term memory recurrent neural network (LSTM-RNN) to classify network attacks. Information 2020, 11, 243. [Google Scholar] [CrossRef]
- Mekruksavanich, S.; Jitpattanakul, A. Lstm networks using smartphone data for sensor-based human activity recognition in smart homes. Sensors 2021, 21, 1636. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, R.; Zhang, E.; Tang, X.; Yan, W.; Liu, Y.; Zhou, H. Thermal Modulation of Resistance Gas Sensor Facilitates Recognition of Fragrance Odors. Chemosensors 2024, 12, 101. https://doi.org/10.3390/chemosensors12060101
Sui R, Zhang E, Tang X, Yan W, Liu Y, Zhou H. Thermal Modulation of Resistance Gas Sensor Facilitates Recognition of Fragrance Odors. Chemosensors. 2024; 12(6):101. https://doi.org/10.3390/chemosensors12060101
Chicago/Turabian StyleSui, Ran, Erpan Zhang, Xiaoshui Tang, Wenjun Yan, Yun Liu, and Houpan Zhou. 2024. "Thermal Modulation of Resistance Gas Sensor Facilitates Recognition of Fragrance Odors" Chemosensors 12, no. 6: 101. https://doi.org/10.3390/chemosensors12060101
APA StyleSui, R., Zhang, E., Tang, X., Yan, W., Liu, Y., & Zhou, H. (2024). Thermal Modulation of Resistance Gas Sensor Facilitates Recognition of Fragrance Odors. Chemosensors, 12(6), 101. https://doi.org/10.3390/chemosensors12060101