Combining PDMS Composite and Plasmonic Solid Chemosensors: Dual Determination of Ammonium and Hydrogen Sulfide as Biomarkers in a Saliva Single Test
Abstract
:1. Introduction
2. Materials and Methods
3. Procedures
3.1. NH3 Chemosensor
3.2. H2S Chemosensor
3.3. Determination of Ammonia and Hydrogen Sulfur
3.4. Real Saliva Samples
Sample Collection and Treatment
4. Results and Discussion
4.1. Selection of the Experimental Conditions
4.2. Study of the Chemosensor Response in Presence of the Other Analyte
4.3. Analytical Parameters of H2S and NH4− Determination
4.4. Application to Real Samples
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milanowski, M.; Pomastowski, P.; Ligor, T.; Buszewski, B. Saliva–Volatile Biomarkers and Profiles. Crit. Rev. Anal. Chem. 2017, 47, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Llena-Puy, C. The Rôle of Saliva in Maintaining Oral Health and as an Aid to Diagnosis. Med. Oral Patol. Oral Cir. Bucal. 2006, 11, 449–455. [Google Scholar]
- Tenovuo, J. Salivary Parameters of Relevance for Assessing Caries Activity in Individuals and Populations. Community Dent. Oral Epidemiol. 1997, 25, 82–86. [Google Scholar] [CrossRef]
- Mikkonen, J.J.W.; Singh, S.P.; Herrala, M.; Lappalainen, R.; Myllymaa, S.; Kullaa, A.M. Salivary Metabolomics in the Diagnosis of Oral Cancer and Periodontal Diseases. J. Periodontal. Res. 2016, 51, 431–437. [Google Scholar] [CrossRef]
- Guan, Y.; Chu, Q.; Ye, J. Determination of Uric Acid in Human Saliva by Capillary Electrophoresis with Electrochemical Detection: Potential Application in Fast Diagnosis of Gout. Anal. Bioanal. Chem. 2004, 380, 913–917. [Google Scholar] [CrossRef]
- Nagler, R.M.; Hershkovich, O.; Lischinsky, S.; Diamond, E.; Reznick, A.Z. Saliva Analysis in the Clinical Setting: Revisiting an Underused Diagnostic Tool. J. Investig. Med. 2002, 50, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.E.; Broughton, A.; Selby, C. Salivary Creatinine Assays as a Potential Screen for Renal Disease. Ann. Clin. Biochem. 1996, 33, 428–431. [Google Scholar] [CrossRef]
- Cooke, M.; Leeves, N.; White, C. Time Profile of Putrescine, Cadaverine, Indole and Skatole in Human Saliva. Arch. Oral Biol. 2003, 48, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Coufal, P.; Zuska, J.; van de Goor, T.; Smith, V.; Gaš, B. Separation of Twenty Underivatized Essential Amino Acids by Capillary Zone Electrophoresis with Contactless Conductivity Detection. Electrophoresis 2003, 24, 671–677. [Google Scholar] [CrossRef]
- Actis, A.B.; Perovic, N.R.; Defagó, D.; Beccacece, C.; Eynard, A.R. Fatty Acid Profile of Human Saliva: A Possible Indicator of Dietary Fat Intake. Arch. Oral Biol. 2005, 50, 1–6. [Google Scholar] [CrossRef]
- Barth, J.A.; Putz, Z.; Vañuga, A.; Velemínsk, J. Radioimmunoassay of Thyroxine in Saliva. Exp. Clin. Endocrinol. Diabetes 1985, 85, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Duan, Y. Saliva: A Potential Media for Disease Diagnostics and Monitoring. Oral Oncol. 2012, 48, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Chiappin, S.; Antonelli, G.; Gatti, R.; De Palo, E.F. Saliva Specimen: A New Laboratory Tool for Diagnostic and Basic Investigation. Clin. Chim. Acta 2007, 383, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Walsh, L.J. Aspectos Clínicos de Biología Salival Para El Clínico Dental. J. Minim. Interv. Dent. 2008, 9, 59–71. [Google Scholar]
- Haeckel, R.; Hänecke, P. The Application of Saliva, Sweat and Tear Fluid for Diagnostic Purposes. Ann. Biol. Clin. 1993, 51, 903–910. [Google Scholar]
- Villiger, M.; Stoop, R.; Vetsch, T.; Hohenauer, E.; Pini, M.; Clarys, P.; Pereira, F.; Clijsen, R. Evaluation and Review of Body Fluids Saliva, Sweat and Tear Compared to Biochemical Hydration Assessment Markers within Blood and Urine. Eur. J. Clin. Nutr. 2018, 72, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Huizenga, J.R.; Gips, C.H. Determination of Ammonia in Saliva Using Indophenol, an Ammonium Electrode and an Enzymatic Method: A Comparative Investigation. J. Clin. Chem. Clin. Biochem. 1982, 20, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Hsieh, J.-C.; Chao, C.-H.; Yang, W.-S.; Cheng, H.-T.; Chan, C.-K.; Lu, C.-J.; Meng, H.-F.; Zan, H.-W. Correlation between Breath Ammonia and Blood Urea Nitrogen Levels in Chronic Kidney Disease and Dialysis Patients. J. Breath Res. 2020, 14, 036002. [Google Scholar] [CrossRef] [PubMed]
- DuBois, S.; Eng, S.; Bhattacharya, R.; Rulyak, S.; Hubbard, T.; Putnam, D.; Kearney, D.J. Breath Ammonia Testing for Diagnosis of Hepatic Encephalopathy. Dig. Dis. Sci. 2005, 50, 1780–1784. [Google Scholar] [CrossRef]
- Zilberman, Y.; Sonkusale, S.R. Microfluidic Optoelectronic Sensor for Salivary Diagnostics of Stomach Cancer. Biosens. Bioelectron. 2015, 67, 465–471. [Google Scholar] [CrossRef]
- Thepchuay, Y.; Mesquita, R.B.R.; Nacapricha, D.; Rangel, A.O.S.S. Micro-PAD Card for Measuring Total Ammonia Nitrogen in Saliva. Anal. Bioanal. Chem. 2020, 412, 3167–3176. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, X.; Zeng, H.; Liu, C.; Tang, B.; Li, Y.; Zhang, L.; Zhang, M. Soap Film as a Rapidly Renewable and Low-Cost Sensor for Detecting Ammonia in Water and Saliva. Microchem. J. 2023, 185, 108209. [Google Scholar] [CrossRef]
- Zilberman, Y.; Chen, Y.; Sonkusale, S.R. Dissolved Ammonia Sensing in Complex Mixtures Using Metalloporphyrin-Based Optoelectronic Sensor and Spectroscopic Detection. Sens. Actuators B Chem. 2014, 202, 976–983. [Google Scholar] [CrossRef]
- Korent, A.; Trafela, Š.; Soderžnik, K.Ž.; Samardžija, Z.; Šturm, S.; Rožman, K.Ž. Au-Decorated Electrochemically Synthesised Polyaniline-Based Sensory Platform for Amperometric Detection of Aqueous Ammonia in Biological Fluids. Electrochim. Acta 2022, 430, 141034. [Google Scholar] [CrossRef]
- Sheini, A. A Paper-Based Device for the Colorimetric Determination of Ammonia and Carbon Dioxide Using Thiomalic Acid and Maltol Functionalized Silver Nanoparticles: Application to the Enzymatic Determination of Urea in Saliva and Blood. Microchim. Acta 2020, 187, 565. [Google Scholar] [CrossRef] [PubMed]
- Monforte-Gómez, B.; Hakobyan, L.; Molins-Legua, C.; Campíns-Falcó, P. Passive Solid Chemosensor as Saliva Point of Need Analysis for Ammonium Determination by Using a Smartphone. Chemosensors 2023, 11, 387. [Google Scholar] [CrossRef]
- Cao, X.; Ding, L.; Xie, Z.; Yang, Y.; Whiteman, M.; Moore, P.K.; Bian, J.-S. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer? Antioxid. Redox Signal. 2019, 31, 1–38. [Google Scholar] [CrossRef]
- Kimura, H. Physiological Role of Hydrogen Sulfide and Polysulfide in the Central Nervous System. Neurochem. Int. 2013, 63, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Greabu, M.; Totan, A.; Miricescu, D.; Radulescu, R.; Virlan, J.; Calenic, B. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review. Antioxidants 2016, 5, 3. [Google Scholar] [CrossRef]
- Rizzo, A.A. The Possible Role of Hydrogen Sulfide in Human Periodontal Disease. I. Hydrogen Sulfide Production in Periodontal Pockets. Periodontics 1967, 5, 233–236. [Google Scholar]
- Feller, L.; Blignaut, E. Halitosis: A Review. S. Afr. Dent. J. 2005, 60, 17–19. [Google Scholar]
- Inoue, S.; Browne, G.; Melino, G.; Cohen, G.M. Ordering of Caspases in Cells Undergoing Apoptosis by the Intrinsic Pathway. Cell Death Differ. 2009, 16, 1053–1061. [Google Scholar] [CrossRef]
- Zaorska, E.; Konop, M.; Ostaszewski, R.; Koszelewski, D.; Ufnal, M. Salivary Hydrogen Sulfide Measured with a New Highly Sensitive Self-Immolative Coumarin-Based Fluorescent Probe. Molecules 2018, 23, 2241. [Google Scholar] [CrossRef]
- Kroll, J.L.; Werchan, C.A.; Reeves, A.G.; Bruemmer, K.J.; Lippert, A.R.; Ritz, T. Sensitivity of Salivary Hydrogen Sulfide to Psychological Stress and Its Association with Exhaled Nitric Oxide and Affect. Physiol. Behav. 2017, 179, 99–104. [Google Scholar] [CrossRef]
- Ahn, B.-K.; Ahn, Y.-J.; Lee, Y.-J.; Lee, Y.-H.; Lee, G.-J. Simple and Sensitive Detection of Bacterial Hydrogen Sulfide Production Using a Paper-Based Colorimetric Assay. Sensors 2022, 22, 5928. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.-H.; Kim, D.-H.; Choi, S.-J.; Koo, W.-T.; Kim, I.-D. Sub-Parts-per-Million Hydrogen Sulfide Colorimetric Sensor: Lead Acetate Anchored Nanofibers toward Halitosis Diagnosis. Anal. Chem. 2018, 90, 8769–8775. [Google Scholar] [CrossRef]
- Carrero-Ferrer, I.; Molins-Legua, C.; Campíns-Falcó, P. Plasmonic Sensor for Hydrogen Sulphide in Saliva: Multisensor Platform and Bag Format. Talanta 2022, 245, 123449. [Google Scholar] [CrossRef] [PubMed]
- Jornet-Martínez, N.; Moliner-Martínez, Y.; Herráez-Hernández, R.; Molins-Legua, C.; Verdú-Andrés, J.; Campíns-Falcó, P. Designing Solid Optical Sensors for in Situ Passive Discrimination of Volatile Amines Based on a New One-Step Hydrophilic PDMS Preparation. Sens. Actuators B Chem. 2016, 223, 333–342. [Google Scholar] [CrossRef]
- Ballester-Caudet, A.; Hakobyan, L.; Moliner-Martínez, Y.; Molins-Legua, C.; Campíns-Falcó, P. Ionic-liquid doped polymeric composite as passive colorimetric sensor for meat freshness as a use case. Talanta 2021, 223 Pt 2, 121778. [Google Scholar] [CrossRef]
- Jornet-Martínez, N.; Hakobyan, L.; Argente-García, A.I.; Molins-Legua, C.; Campíns-Falcó, P. Nylon-Supported Plasmonic Assay Based on the Aggregation of Silver Nanoparticles: In Situ Determination of Hydrogen Sulfide-like Compounds in Breath Samples as a Proof of Concept. ACS Sens. 2019, 4, 2164–2172. [Google Scholar] [CrossRef]
- Konvalina, G. Haick, Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Thepchuay, Y.; Costa, C.F.; Mesquita, R.B.; Sampaio-Maia, B.; Nacapricha, D.; Rangel, A.O. Flow-Based Method for the Determination of Biomarkers Urea and Ammoniacal Nitrogen in Saliva. Bioanalysis 2020, 12, 455–465. [Google Scholar] [CrossRef] [PubMed]
Methods | Lineal Interval (mg/L) | LOD (mg/L) | Reference |
---|---|---|---|
Micro-PAD card for measuring total ammonia in saliva | 11–50 | 3 | [21] |
Soap film as a rapidly renewable and low-cost sensor for detecting ammonia in water and saliva | 0.7–500 | 0.2 | [22] |
Dissolved ammonia sensing in complex mixtures using metalloporphyrin-based optoelectronic sensor and spectroscopic detection | 1.3–17 | 0.4 | [23] |
Au-decorated electrochemically synthesised polyaniline-based sensory platform for amperometric detection of aqueous ammonia in biological fluids | 0.07–870 | 0.02 | [24] |
A paper-based device for the colorimetric determination of ammonia and carbon dioxide using thiomalic acid and maltol functionalized silver nanoparticles | 0.6–1700 | 0.3 | [25] |
Passive Solid Chemosensor as Saliva Point of Need Analysis for Ammonium Determination by Using a Smartphone | 100–700 | 30 | [26] |
Article | Lineal Interval (mg/L) | LOD (mg/L) | Reference |
---|---|---|---|
Salivary Hydrogen Sulfide Measured with a New Highly Sensitive Self-Immolative Coumarin-Based Fluorescent Probe | 0.05–0.56 | 0.02 | [33] |
Sensitivity of salivary hydrogen sulfide to psychological stress and its association with exhaled nitric oxide and affect | 0.08–0.56 | 0.02 | [34] |
Simple and Sensitive Detection of Bacterial Hydrogen Sulfide Production Using a Paper-Based Colorimetric Assay | 0.02–2.8 | 0.008 | [35] |
Sub-Parts-per-Million Hydrogen Sulfide Colorimetric Sensor: Lead Acetate Anchored Nanofibers toward Halitosis Diagnosis | 0.6–5 | 0.2 | [36] |
Plasmonic sensor for hydrogen sulphide in saliva: Multisensor platform and bag format | 0.06–1 | 0.02 | [37] |
LOD (mg/L) | LOQ (mg/L) | Lineal Interval | |
---|---|---|---|
Diffuse Reflectance (H2S) | 0.02 (a) | 0.06 | 0.06–1 mg/L |
RGB Coordinates (H2S) | 0.03 (a) | 0.10 | 0.10–1 mg/L |
Diffuse Reflectance ((NH4+) | 0.02 (b) | 0.06 | 0.06–2 mg/mL |
0.007 (c) | 0.02 | 0.02–0.5 mg/mL | |
RGB Coordinates (NH4+) (c) | 0.03 (b) | 0.10 | 0.10–1 mg/mL |
0.02 (c) | 0.06 | 0.06–0.5 mg/mL |
Time | b ± sb | a ± sa | R2 | |
---|---|---|---|---|
Diffuse reflectance (H2S) | 10 min | 0.54 ± 0.01 | 0.344 ± 0.005 | 0.998 |
Coordinates RGB (H2S) | 10 min | 0.179 ± 0.009 | 0.006 ± 0.004 | 0.990 |
Diffuse reflectance (NH4+) | 15 min | 0.159 ± 0.004 | 0.084 ± 0.003 | 0.997 |
30 min | 0.474 ± 0.018 | 0.077 ± 0.004 | 0.994 | |
Coordinates RGB (NH4+) | 15 min | 0.33 ± 0.02 | 0.023 ± 0.012 | 0.990 |
30 min | 0.57 ± 0.03 | 0.007 ± 0.006 | 0.993 |
RSD Intraday (n = 5) | RSD Interday (n = 3) | ||
---|---|---|---|
Diffuse reflectance (H2S) | 10 min | 1.3% | 9.3% |
Coordinates RGB (H2S) | 10 min | 3.2% | 12.1% |
Diffuse reflectance (NH4+) | 15 min | 1.9% | 11.5% |
30 min | 1.7% | 9.7% | |
Coordinates RGB (NH4+) | 15 min | 2.4% | 11.1% |
30 min | 2.1% | 10.4% |
NH4+ | H2S | ||
---|---|---|---|
Recovey (%) | Diffusse reflectance | 91 ± 11 | 88 ± 15 |
Coordinates RGB | 84 ± 12 | 88 ± 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monforte-Gómez, B.; Mallorca-Cebriá, S.; Molins-Legua, C.; Campíns-Falcó, P. Combining PDMS Composite and Plasmonic Solid Chemosensors: Dual Determination of Ammonium and Hydrogen Sulfide as Biomarkers in a Saliva Single Test. Chemosensors 2024, 12, 94. https://doi.org/10.3390/chemosensors12060094
Monforte-Gómez B, Mallorca-Cebriá S, Molins-Legua C, Campíns-Falcó P. Combining PDMS Composite and Plasmonic Solid Chemosensors: Dual Determination of Ammonium and Hydrogen Sulfide as Biomarkers in a Saliva Single Test. Chemosensors. 2024; 12(6):94. https://doi.org/10.3390/chemosensors12060094
Chicago/Turabian StyleMonforte-Gómez, Belen, Sergio Mallorca-Cebriá, Carmen Molins-Legua, and Pilar Campíns-Falcó. 2024. "Combining PDMS Composite and Plasmonic Solid Chemosensors: Dual Determination of Ammonium and Hydrogen Sulfide as Biomarkers in a Saliva Single Test" Chemosensors 12, no. 6: 94. https://doi.org/10.3390/chemosensors12060094
APA StyleMonforte-Gómez, B., Mallorca-Cebriá, S., Molins-Legua, C., & Campíns-Falcó, P. (2024). Combining PDMS Composite and Plasmonic Solid Chemosensors: Dual Determination of Ammonium and Hydrogen Sulfide as Biomarkers in a Saliva Single Test. Chemosensors, 12(6), 94. https://doi.org/10.3390/chemosensors12060094