A Flow-Through Biosensor System Based on Pillar[3]Arene[2]Quinone and Ferrocene for Determination of Hydrogen Peroxide and Uric Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. SPCE Modification
2.3. SEM Measurements
2.4. Flow-through Cell Manufacture
2.5. Enzyme Immobilization and Signal Measurement
3. Results
3.1. Electrochemical Characterization of Pillar[3]Arene[2]–Ferrocene Coating
3.2. SEM Investigation
3.3. Hydrogen Peroxide Determination
3.4. Biosensor System for Uric Acid Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bucur, B.; Purcarea, C.; Andreescu, S.; Vasilescu, A. Addressing the selectivity of enzyme biosensors: Solutions and perspectives. Sensors 2021, 21, 3038. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Miyazaki, M. Enzyme-immobilized microfluidic devices for biomolecule detection. TrAC—Trend Anal. Chem. 2023, 159, 116908. [Google Scholar] [CrossRef]
- Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef]
- Sahragard, A.; Varanusupakul, P.; Miró, M. Nanomaterial decorated electrodes in flow-through electrochemical sensing of environmental pollutants: A critical review. Trends Environ. Anal. Chem. 2023, 39, e00208. [Google Scholar] [CrossRef]
- Yang, X.; Liu, C.; Chen, Z. Rapid determination of uric acid in human urine by CE with an improved electromagnetic induction detector. Chromatographia 2014, 78, 119–123. [Google Scholar] [CrossRef]
- Smolko, V.A.; Shurpik, D.N.; Shamagsumova, R.V.; Porfireva, A.V.; Evtugyn, V.G.; Yakimova, L.S.; Stoikov, I.I.; Evtugyn, G.A. Electrochemical behavior of pillar[5] on glassy carbon electrode and its interaction with Cu2+ and Ag+ ions. Electrochim. Acta 2014, 147, 726–734. [Google Scholar] [CrossRef]
- Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. Para-bridged symmetrical pillar[5]arenes: Their Lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 2008, 130, 5022–5023. [Google Scholar] [CrossRef]
- Ogoshi, T.; Yamagishi, T.; Nakamoto, Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: New key players for supramolecular chemistry. Chem. Rev. 2016, 116, 7937–8002. [Google Scholar] [CrossRef]
- Wang, Y.; Ping, G.; Li, C. Efficient complexation between pillar[5]arenes and neutral guests: From host–guest chemistry to functional materials. Chem. Commun. 2016, 52, 9858–9872. [Google Scholar] [CrossRef]
- Ohtani, S.; Kato, K.; Fa, S.; Ogoshi, T. Host–guest chemistry based on solid-state pillar[n]arenes. Coord. Chem. Rev. 2022, 462, 214503. [Google Scholar] [CrossRef]
- Xia, W.; Hu, X.Y.; Chen, Y.; Lin, C.; Wang, L. A novel redox-responsive pillar[6]arene-based inclusion complex with a ferrocenium guest. Chem. Commun. 2013, 49, 5085–5087. [Google Scholar] [CrossRef]
- Acikbas, Y.; Aksoy, M.; Aksoy, M.; Karaagac, D.; Bastug, E.; Kursunlu, A.N.; Erdogan, M.; Capan, R.; Ozmen, M.; Ersoz, M. Recent progress in pillar[n]arene-based thin films on chemical sensor applications. J. Incl. Phenom. Macrocycl. Chem. 2021, 100, 39–54. [Google Scholar] [CrossRef]
- Sun, J.; Guo, F.; Shi, Q.; Wu, H.; Sun, Y.; Chen, M.; Diao, G. Electrochemical detection of paraquat based on silver nanoparticles/water-soluble pillar[5]arene functionalized graphene oxide modified glassy carbon electrode. J. Electroanal. Chem. 2019, 847, 113221. [Google Scholar] [CrossRef]
- Tan, X.; He, S.; Liu, X.; Zhao, G.; Huang, T.; Yang, L. Ultrasensitive electrochemical sensing of dopamine by using dihydroxylatopillar[5]arene-modified gold nanoparticles and anionic pillar[5]arene-functionalized graphitic carbon nitride. Microchim. Acta 2019, 186, 703. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, Y.; Ye, H.; Li, C.-P. Ultrasensitive and ultrawide range electrochemical determination of bisphenol A based on PtPd bimetallic nanoparticles and cationic pillar[5]arene decorated graphene. J. Electroanal. Chem. 2019, 855, 113487. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, L.; Bei, J.; Zhao, Q.; Li, X.; He, J.; Cai, Y.; Chen, T.; Du, Y.; Yao, Y. An enhanced photo-electrochemical sensor constructed from pillar[5]arene functionalized Au NPs for ultrasensitive detection of caffeic acid. Talanta 2022, 243, 123322. [Google Scholar] [CrossRef]
- Erdogan, Z.O.; Kursunlu, A.; Kucukkolbasi, S. Pillar[5]arene based non-enzymatic and enzymatic tyramine sensor. IEEE Sens. J. 2021, 21, 5728–5735. [Google Scholar] [CrossRef]
- Pachla, L.A.; Reynolds, D.L.; Wright, D.S.; Kissinger, P.T. Analytical methods for measuring uric acid in biological samples and food products. J. AOAC Int. 1987, 70, 1–14. [Google Scholar] [CrossRef]
- Ullman, B.; Wormsted, M.A.; Cohen, M.B.; Martin, D.W. Purine oversecretion in cultured murine lymphoma cells deficient in adenylosuccinate synthetase: Genetic model for inherited hyperuricemia and gout. Proc. Natl. Acad. Sci. USA 1982, 79, 5127–5131. [Google Scholar] [CrossRef]
- Yamanaka, H.; Togashi, R.; Hakoda, M.; Terai, C.; Kashiwazaki, S.; Dan, T.; Kamatani, N. Optimal range of serum urate concentrations to minimize risk of gouty attacks during anti-hyperuricemic treatment. Purine Pyrimidine Met. 1998, 431, 13–18. [Google Scholar] [CrossRef]
- Rocha, D.L.; Rocha, F.R.P. A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine. Microchem. J. 2010, 94, 53–59. [Google Scholar] [CrossRef]
- Jin, D.; Seo, M.-H.; Huy, B.T.; Pham, Q.-T.; Conte, M.L.; Thangadurai, D.; Lee, Y.I. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens. Bioelectron. 2016, 7, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, H.; Li, X.; Zhao, J.; Guo, X.; Wang, J.; Liang, X. Separation and characterization of bufadienolides in toad skin using two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography coupled with mass spectrometry. J. Chromatogr. B 2016, 1026, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Wang, N.; Wang, D.; Zhang, X.; Ma, H.; Lin, M. Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide. Microchim. Acta 2016, 183, 3053–3059. [Google Scholar] [CrossRef]
- Hernández-Ramírez, D.; Mendoza-Huizar, L.H.; Galán-Vidal, C.A.; Aguilar-Lira, G.Y.; Álvarez-Romero, G.A. Review—Trends on the development of non-enzymatic electrochemical sensors modified with metal-oxide nanostructures for the quantification of uric acid. J. Electrochem. Soc. 2021, 168, 057522. [Google Scholar] [CrossRef]
- Beitollahi, H.; Movahedifar, F.; Tajik, S.; Jahani, S. A Review on the effects of introducing CNTs in the modification process of electrochemical sensors. Electroanalysis 2018, 31, 1195–1203. [Google Scholar] [CrossRef]
- Antuña-Jiménez, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Screen-printed electrodes modified with metal nanoparticles for small molecule sensing. Biosensors 2020, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.M.; da Silva, A.D.; Camargo, J.R.; de Castro, B.S.; Meireles, L.M.; Silva, P.S.; Janegitz, P.C.; Silva, T.A. Carbon nanomaterials-based screen-printed electrodes for sensing applications. Biosensors 2023, 13, 453. [Google Scholar] [CrossRef] [PubMed]
- Komkova, M.; Karyakin, A. Prussian blue: From advanced electrocatalyst to nanozymes defeating natural enzyme. Microchim. Acta 2022, 189, 290. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, W.; Fu, L.; Lorenzo, J.M.; Hao, Y. Fabrication and application of electrochemical sensor for analyzing hydrogen peroxide in food system and biological samples. Food Chem. 2022, 385, 132555. [Google Scholar] [CrossRef]
- Zribi, R.; Ferlazzo, A.; Fazio, E.; Condorelli, M.; D’Urso, L.; Neri, G.; Corsaro, C.; Neri, F.; Compagnini, G.; Neri, G. Ag nanoplates modified-screen printed carbon electrode to improve electrochemical performances. Toward a selective H2O2 detection. IEEE Trans. Instrum. Meas. 2023, 72, 6002708. [Google Scholar] [CrossRef]
- Giarola, J.F.; Mano, V.; Pereira, C. Development and application of a voltammetric biosensor based on polypyrrole/uricase/graphene for uric acid determination. Electroanalysis 2018, 30, 119–127. [Google Scholar] [CrossRef]
- Bhushan, P.Y.; Umasankar, S.R.; Choudhury, P.A.; Hirt, F.E.; Mac Quhaec, L.J.; Borda, H.A.; Lev-Tov, R.S.; Kirsner, R.S.; Bansali, S. Biosensor for monitoring uric acid in wound and its proximity: A potential wound diagnostic tool. J. Electrochem. Soc. 2019, 166, B830–B836. [Google Scholar] [CrossRef]
- Omar, M.N.; Salleh, A.B.; Lim, H.N.; Tajudin, A.A. Electrochemical detection of uric acid via uricase-immobilized graphene oxide. Anal. Biochem. 2016, 509, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Verma, S.; Singh, S.P.; Sharma, S.N. An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection. Biosens. Bioelectron. 2019, 127, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.N.; Tripathy, N.; Ahn, M.-S.; Hahn, Y.-B. Solution process synthesis of high aspect ratio ZnO nanorods on electrode surface for sensitive electrochemical detection of uric acid. Sci. Rep. 2017, 7, 46475. [Google Scholar] [CrossRef]
- Verma, S.; Choudhary, J.; Singh, K.P.; Chandra, P.; Singh, S.P. Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int. J. Biol. Macromol. 2019, 130, 333–341. [Google Scholar] [CrossRef]
- Feng, S.; Yu, L.; Yan, M.; Ye, J.; Huang, J.; Yang, X. Holey nitrogen-doped graphene aerogel for simultaneously electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta 2021, 224, 121851. [Google Scholar] [CrossRef]
- Fukuda, T.; Muguruma, H.; Iwasa, H.; Tanaka, T.; Hiratsuka, A.; Shimizu, T.; Tsuji, K.; Kishimoto, T. Electrochemical determination of uric acid in urine and serum with uricase/carbon nanotube/carboxymethylcellulose electrode. Anal. Biochem. 2020, 590, 113533. [Google Scholar] [CrossRef]
- Thanh, T.S.; Qui, P.T.; Tu, N.T.T.; Toan, T.T.T.; Hoa, T.T.B.; Son, L.V.T.; Nguyen, D.M.; Tuyen, T.N.; Khieu, D.Q. Electrochemical determination of uric acid in urine by using zeolite imidazolate framework-11 modified electrode. J. Nanomater. 2021, 2021, e9914062. [Google Scholar] [CrossRef]
- Tang, T.; Zhou, M.; Lv, J.; Cheng, H.; Wang, H.; Qin, D.; Hu, G.; Liu, X. Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids Surf. B 2022, 216, 112538. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, B.; Pan, Z.; Sun, L.; Peng, L.; Chen, Y.; Wu, N.; Wang, M.; Yang, W. electrochemical determination of dopamine and uric acid with covalent organic frameworks and Ox-MWCNT co-modified glassy carbon electrode. Colloids Surf. A 2022, 648, 129316. [Google Scholar] [CrossRef]
- Stoikov, D.; Ivanov, A.; Shurpik, D.; Stoikov, I.; Evtugyn, G. Flow-through electrochemical biosensor with a replaceable enzyme reactor and screen-printed electrode for the determination of uric acid and tyrosine. Anal. Lett. 2022, 55, 1281–1295. [Google Scholar] [CrossRef]
- Ivanov, A.; Stoikov, D.; Shafigullina, I.; Shurpik, D.; Stoikov, I.; Evtugyn, G. Flow-through acetylcholinesterase sensor with replaceable enzyme reactor. Biosensors 2022, 12, 676. [Google Scholar] [CrossRef]
- Shamagsumova, R.V.; Kulikova, T.N.; Porfireva, A.V.; Shurpik, D.N.; Stoikov, I.I.; Rogov, A.M.; Stoikov, D.I.; Evtugyn, G.A. Electrochemistry and electrochemical assessment of host–guest complexation of substituted pillar[m]arene[n]quinones. J. Electroanal. Chem. 2023, 938, 117444. [Google Scholar] [CrossRef]
- Smolko, V.A.; Shurpik, D.N.; Evtugyn, V.G.; Stoikov, I.I.; Evtugyn, G.A. Organic acid and DNA sensing with electrochemical sensor based on carbon black and pillar[5]arene. Electroanalysis 2016, 28, 1391–1400. [Google Scholar] [CrossRef]
- Neghmouche, N.S.; Khelef, A.; Lanez, T. Electrochemistry characterization of ferrocene/ferricenium redox couple at glassy carbon electrode. J. Fundam. Appl. Sci. 2015, 1, 23–30. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, H.; Li, M.; Shao, L.; Hua, B. Host–guest complexation of perethylated pillar[6]arene toward ferrocene derivatives both in solution and solid state: Different binding modes induced by minor structural changes of guests. Org. Lett. 2020, 22, 1552–1556. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tian, Y.; Xia, P. Pyramidal, rodlike, spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: Application to superoxide anion biosensors. Langmuir 2008, 24, 6359–6366. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, C.; Shang, Y.; Zhang, P.; Liu, J.; Zheng, J. Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide. Microchim. Acta 2018, 185, 172. [Google Scholar] [CrossRef]
- Magro, M.; Baratella, D.; Pianca, N.; Toninello, A.; Grancara, S.; Zboril, R.; Vianello, F. Electrochemical determination of hydrogen peroxide production by isolated mitochondria: A novel nanocomposite carbon–maghemite nanoparticle electrode. Sens. Actuators B 2013, 176, 315–322. [Google Scholar] [CrossRef]
- Lin, D.; Su, Z.; Wei, G. Three-dimensional porous reduced graphene oxide decorated with MoS2 quantum dots for electrochemical determination of hydrogen peroxide. Mat. Chem. 2018, 7, 76–83. [Google Scholar] [CrossRef]
- Pfrimer, P.; Moraes, L.M.P.; Galdino, A.S.; Salles, L.P.; Reis, V.C.B.; de Marco, J.L.; Prates, M.V.; Bloch, C.; Torres, F.A.G. Cloning, purification, and partial characterization of bacillus subtilis urate oxidase expressed in Escherichia coli. J. Biomed. Biotechnol. 2010, 2010, 674908. [Google Scholar] [CrossRef] [PubMed]
Modifier | Δ(I, μA) = a + b × log(c, M) | R2 | n | Concentration Range, −log(c, M) | LOD, nM | |
---|---|---|---|---|---|---|
a | b | |||||
Ferrocene | 0.5775 ± 0.0006 | 0.0901 ± 0.0001 | 0.9999 | 4 | 6.5–4 | 6000 |
Pillar[3]arene[2]quinone | 0.207 ± 0.001 | 0.0249 ± 0.001 | 0.9998 | 7 | 8–4 | 40 |
Pillar[3]arene[2]quinone + ferrocene | 0.476 ± 0.001 | 0.0520 ± 0.0003 | 0.9997 | 9 | 9–4 | 0.3 |
Electrode/Modifier | Detection Mode | Concentration Range, M | LOD, M | Ref. |
---|---|---|---|---|
Au/chitosan | Cyclic voltammetry | 8 × 10−7–1.3 × 10−2 | 9.8 × 10−7 | [49] |
Glassy carbon electrode/Cu2O/polyaniline/reduced graphene oxide | Chronoamperometry | 8.5 × 10−4–12.78 × 10−2 | 5 × 10−7 | [50] |
Carbon-paste electrode/surfactant/carbon–maghemite composite | Cyclic voltammetry | 1 × 10−5–1.5 × 10−3 | 2.78 × 10−6 | [51] |
Glassy carbon electrode/MoS2/graphene oxide | Cyclic voltammetry | 1 × 10−5–5.57 × 10−3 | 1.9 × 10−6 | [52] |
Pillar[3]arene[2]quinone/carbon black | Chronoamperometry | 1 × 10−8–1 × 10−4 | 5 × 10−9 | This work |
Pillar[3]arene[2]quinone/ferrocene/carbon black | Chronoamperometry | 1 × 10−9–1 × 10−4 | 3 × 10−10 | This work |
Modifier | Detection Mode | Concentration Range, M | LOD, M | Ref. |
---|---|---|---|---|
Polypyrrole, graphene, Pt nanoparticles | CV | 2 × 10−9–2.4 × 10−8 | 5.41 × 10−10 | [32] |
Horseradish peroxidase, Au nanoparticles, multiwalled carbon nanotubes | CV | 5 × 10−5–6.5 × 10−4 | 9.91 × 10−6 | [33] |
Graphene oxide | DPV | 2 × 10−5–4.9 × 10−4 | 3.45 × 10−6 | [34] |
Cu2ZnSnS4 | DPV | 5 × 10−8–7 × 10−4 | 6.6 × 10−8 | [35] |
Nafion, ZnO nanorods | CV | 1 × 10−3–1 × 10−2 | 2.3 × 10−5 | [36] |
Au/reduced graphene oxide | DPV | 5 × 10−5–8 × 10−4 | 5.32 × 10−6 | [37] |
N-doped graphene aerogel | CV | 4 × 10−7–5 × 10−5 | 1.2 × 10−7 | [38] |
Carbon nanotubes, carboxymethylcellulose | CV | 2 × 10−5–2.7 × 10−3 | 2.8 × 10−6 | [39] |
Zeolite imidazolate framework-11 | DPV | 5 × 10−6–5.4 × 10−4 | 4.8 × 10−7 | [40] |
Magnetite decorated urchin-like N-doped carbon | DPV | 2 × 10−6–2 × 10−4 | 2.9 × 10−7 | [41] |
Covalent organic framework and multiwalled carbon nanotubes with Co nanoparticles | DPV | 6 × 10−7–2.5 × 10−4 | 6.3 × 10−8 | [42] |
Uricase on reactor, pillar[3]arene[2]quinone in carbon black layer | CA | 5 × 10−8–1 × 10−5 | 2 × 10−8 | This work |
Uricase on reactor, pillar[3]arene[2]quinone/ferrocene in carbon black layer | CA | 1 × 10−8–1 × 10−5 | 1 × 10−8 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoikov, D.; Shafigullina, I.; Shurpik, D.; Stoikov, I.; Evtugyn, G. A Flow-Through Biosensor System Based on Pillar[3]Arene[2]Quinone and Ferrocene for Determination of Hydrogen Peroxide and Uric Acid. Chemosensors 2024, 12, 98. https://doi.org/10.3390/chemosensors12060098
Stoikov D, Shafigullina I, Shurpik D, Stoikov I, Evtugyn G. A Flow-Through Biosensor System Based on Pillar[3]Arene[2]Quinone and Ferrocene for Determination of Hydrogen Peroxide and Uric Acid. Chemosensors. 2024; 12(6):98. https://doi.org/10.3390/chemosensors12060098
Chicago/Turabian StyleStoikov, Dmitry, Insiya Shafigullina, Dmitry Shurpik, Ivan Stoikov, and Gennady Evtugyn. 2024. "A Flow-Through Biosensor System Based on Pillar[3]Arene[2]Quinone and Ferrocene for Determination of Hydrogen Peroxide and Uric Acid" Chemosensors 12, no. 6: 98. https://doi.org/10.3390/chemosensors12060098
APA StyleStoikov, D., Shafigullina, I., Shurpik, D., Stoikov, I., & Evtugyn, G. (2024). A Flow-Through Biosensor System Based on Pillar[3]Arene[2]Quinone and Ferrocene for Determination of Hydrogen Peroxide and Uric Acid. Chemosensors, 12(6), 98. https://doi.org/10.3390/chemosensors12060098