Enhanced Sensitivity and Homogeneity of SERS Signals on Plasmonic Substrate When Coupled to Paper Spray Ionization–Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Plasmonic Paper Substrates
2.2. Sampling of Various Analytes onto Plasmonic Paper Substrates
2.3. Sampling of Various Analytes on the Plasmonic Paper Substrates
3. Results and Discussion
3.1. Design and Characterization of PSI-SERS Using Plasmonic Paper Substrates with Mixed Solution of AuNPs and Analytes
3.2. Optimization of AuNP Concentration to Induce Optimal SERS Enhancement without Sacrificing MS Performance
3.3. The Influence of PSI-MS Pretreatment on SERS Spectra of Illicit Drugs across the Plasmonic Substrates
3.4. The Influence of PSI-MS Pretreatment on SERS Spectra of Other Organic Molecules with Strong Interface Interactions across the Plasmonic Substrates
3.5. The Influence of PSI-MS Pretreatment on SERS Spectra for Mixed Analytes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moldovan, R.; Vereshchagina, E.; Milenko, K.; Jacob, B.-C.; Bodoki, A.E.; Falamas, A.; Tosa, N.; Muntean, C.M.; Farcau, C.; Bodoki, E. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal. Chim. Acta 2022, 1209, 339250. [Google Scholar] [CrossRef]
- Restaino, S.M.; White, I.M. A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Anal. Chim. Acta 2018, 1060, 17–29. [Google Scholar] [CrossRef]
- Teixeira, A.; Hernández-Rodríguez, J.F.; Wu, L.; Oliveira, K.; Kant, K.; Piairo, P.; Diéguez, L.; Abalde-Cela, S. Microfluidics-driven fabrication of a low cost and ultrasensitive SERS-based paper biosensor. Appl. Sci. 2019, 9, 1387. [Google Scholar] [CrossRef]
- Gwon, Y.; Kim, J.-H.; Lee, S.-W. Quantification of plasma dopamine in depressed patients using silver-enriched silicon nanowires as SERS-active substrates. ACS Sens. 2024, 9, 870–882. [Google Scholar] [CrossRef]
- Holtkamp, H.U.; Aguergaray, C.; Prangnell, K.; Pook, C.; Amirapu, S.; Grey, A.; Simpson, C.; Nieuwoudt, M.; Jarrett, P. Raman spectroscopy and mass spectrometry identifies a unique group of epidermal lipids in active discoid lupus erythematosus. Sci. Rep. 2023, 13, 16452. [Google Scholar] [CrossRef]
- Lo, Y.-H.; Hiramatsu, H. Online liquid chromatography–Raman spectroscopy using the vertical flow method. Anal. Chem. 2020, 92, 14601–14607. [Google Scholar] [CrossRef]
- Liangsupree, T.; Multia, E.; Saarinen, J.; Ruiz-Jimenez, J.; Kemell, M.; Riekkola, M.-L. Raman spectroscopy combined with comprehensive gas chromatography for label-free characterization of plasma-derived extracellular vesicle subpopulations. Anal. Biochem. 2022, 647, 114672. [Google Scholar] [CrossRef]
- Klingler, S.; Hniopek, J.; Stach, R.; Schmitt, M.; Popp, J.; Mizaikoff, B. Simultaneous infrared spectroscopy, Raman spectroscopy, and luminescence sensing: A multispectroscopic analytical platform. ACS Meas. Sci. Au 2022, 2, 157–166. [Google Scholar] [CrossRef]
- Fedick, P.W.; Morato, N.M.; Pu, F.; Cooks, R.G. Raman spectroscopy coupled with ambient ionization mass spectrometry: A forensic laboratory investigation into rapid and simple dual instrumental analysis techniques. Int. J. Mass Spectrom. 2020, 452, 116326. [Google Scholar] [CrossRef]
- Rankin-Turner, S.; Sears, P.; Heaney, L.M. Applications of ambient ionization mass spectrometry in 2022: An annual review. Anal. Sci. Adv. 2023, 4, 133–153. [Google Scholar] [CrossRef]
- Brown, H.M.; McDaniel, T.J.; Doppalapudi, K.R.; Mulligan, C.C.; Fedick, P.W. Rapid, in situ detection of chemical warfare agent simulants and hydrolysis products in bulk soils by low-cost 3D-printed cone spray ionization mass spectrometry. Analyst 2021, 146, 3127–3136. [Google Scholar] [CrossRef]
- Feider, C.L.; Krieger, A.; DeHoog, R.J.; Eberlin, L.S. Ambient ionization mass spectrometry: Recent developments and applications. Anal. Chem. 2019, 91, 4266–4290. [Google Scholar] [CrossRef]
- Shi, L.; Habib, A.; Bi, L.; Hong, H.; Begum, R.; Wen, L. Ambient ionization mass spectrometry: Application and prospective. Crit. Rev. Anal. Chem. 2022, 1–50. [Google Scholar] [CrossRef]
- McBride, E.M.; Mach, P.M.; Dhummakupt, E.S.; Dowling, S.; Carmany, D.O.; Demond, P.S.; Rizzo, G.; Manicke, N.E.; Glaros, T. Paper spray ionization: Applications and perspectives. TrAC Trends Anal. Chem. 2019, 118, 722–730. [Google Scholar] [CrossRef]
- Hashimoto, K.; Badarla, V.R.; Kawai, A.; Ideguchi, T. Complementary vibrational spectroscopy. Nat. Commun. 2019, 10, 4411. [Google Scholar] [CrossRef]
- Oksenberg, E.; Shlesinger, I.; Tek, G.; Koenderink, A.F.; Garnett, E.C. Complementary surface-enhanced Raman scattering (SERS) and IR absorption spectroscopy (SEIRAS) with nanorods-on-a-mirror. Adv. Funct. Mater. 2023, 33, 2211154. [Google Scholar] [CrossRef]
- Fedick, P.W.; Bills, B.J.; Manicke, N.E.; Cooks, R.G. Forensic sampling and analysis from a single substrate: Surface-enhanced Raman spectroscopy followed by paper spray mass spectrometry. Anal. Chem. 2017, 89, 10973–10979. [Google Scholar] [CrossRef]
- Burr, D.S.; Fatigante, W.L.; Lartey, J.A.; Jang, W.; Stelmack, A.R.; McClurg, N.W.; Standard, J.M.; Wieland, J.R.; Kim, J.-H.; Mulligan, C.C.; et al. Integrating SERS and PSI-MS with dual purpose plasmonic paper substrates for on-site illicit drug confirmation. Anal. Chem. 2020, 92, 6676–6683. [Google Scholar] [CrossRef]
- Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. [Google Scholar] [CrossRef]
- Sharma, B.; Cardinal, M.F.; Kleinman, S.L.; Greeneltch, N.G.; Frontiera, R.R.; Blaber, M.G.; Schatz, G.C.; Van Duyne, R.P. High-performance SERS substrates: Advances and challenges. MRS Bull. 2013, 38, 615–624. [Google Scholar] [CrossRef]
- Lartey, J.A.; Harms, J.P.; Frimpong, R.; Mulligan, C.C.; Driskell, J.D.; Kim, J.-H. Sandwiching analytes with structurally diverse plasmonic nanoparticles on paper substrates for surface enhanced Raman spectroscopy. RSC Adv. 2019, 9, 32535–32543. [Google Scholar] [CrossRef]
- Qi, Z.; Akhmetzhanov, T.; Pavlova, A.; Smirnov, E. Reusable SERS substrates based on gold nanoparticles for peptide detection. Sensors 2023, 23, 6352. [Google Scholar] [CrossRef]
- Kim, J.-H.; Twaddle, K.M.; Cermak, L.M.; Jang, W.; Yun, J.; Byun, H. Photothermal heating property of gold nanoparticle loaded substrates and their SERS response. Colloids Surf. A 2016, 498, 20–29. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; de Souza, M.L.; Souza, K.S.; dos Santos, D.P.; Andrade, G.F.S.; Temperini, M.L.A. Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates. Phys. Chem. Chem. Phys. 2015, 17, 21294–21301. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Lawton, Z.E.; Traub, A.; Fatigante, W.L.; Mancias, J.; O’Leary, A.E.; Hall, S.E.; Wieland, J.R.; Oberacher, H.; Gizzi, M.C.; Mulligan, C.C. Analytical validation of a portable mass spectrometer featuring interchangeable, ambient ionization sources for high throughput forensic evidence screening. J. Am. Soc. Mass Spectr. 2017, 28, 1048–1059. [Google Scholar] [CrossRef]
- Ashley, M.J.; Bourgeois, M.R.; Murthy, R.R.; Laramy, C.R.; Ross, M.B.; Naik, R.R.; Schatz, G.C.; Mirkin, C.A. Shape and size control of substrate-grown gold nanoparticles for surface-enhanced Raman spectroscopy detection of chemical analytes. J. Phys. Chem. C 2018, 122, 2307–2314. [Google Scholar] [CrossRef]
- Tian, F.; Bonnier, F.; Casey, A.; Shanahan, A.E.; Byrne, H.J. Surface enhanced Raman scattering with gold nanoparticles: Effect of particle shape. Anal. Methods 2014, 6, 9116–9123. [Google Scholar] [CrossRef]
- Nikoobakht, B.; El-Sayed, M.A. Surface-enhanced Raman scattering on aggregated gold nanorods. J. Phys. Chem. A 2003, 107, 3372–3378. [Google Scholar] [CrossRef]
- Rycenga, M.; Langille, M.R.; Personick, M.L.; Ozel, T.; Mirkin, C.A. Chemically isolating hot spots on concave nanocubes. Nano Lett. 2012, 12, 6218–6222. [Google Scholar] [CrossRef]
- Ngo, Y.H.; Li, D.; Simon, G.P.; Garnier, G. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J. Colloid Interface Sci. 2013, 392, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.; Byun, H.; Kim, J.-H. Rapid preparation of paper-based plasmonic platforms for SERS applications. Mater. Chem. Phys. 2020, 240, 122124. [Google Scholar] [CrossRef]
- Fusaro, M.; Leś, A.; Stolarczyk, E.U.; Stolarczyk, K. Computational modeling of gold nanoparticle interacting with molecules of pharmaceutical interest in water. Molecules 2023, 28, 7167. [Google Scholar] [CrossRef]
- Osinkina, L. Interactions of Molecules in the Vicinity of Gold Nanoparticles; LMU: Munich, Germany, 2014. [Google Scholar]
- Rafiee, M.; Chandra, S.; Ahmed, H.; McCormack, S.J. Optimized 3D finite-difference-time-domain algorithm to model the plasmonic properties of metal nanoparticles with near-unity accuracy. Chemosensors 2021, 9, 114. [Google Scholar] [CrossRef]
- Haynes, C.L.; Van Duyne, R.P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2003, 107, 4726–4733. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, T.; Liu, Z. Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling. Nanotechnology 2004, 15, 357–364. [Google Scholar] [CrossRef]
- Lee, M.; Oh, K.; Choi, H.-K.; Lee, S.G.; Youn, H.J.; Lee, H.L.; Jeong, D.H. Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens. 2018, 3, 151–159. [Google Scholar] [CrossRef]
- Kho, K.W.; Shen, Z.X.; Zeng, H.C.; Soo, K.C.; Olivo, M. Deposition method for preparing SERS-active gold nanoparticle substrates. Anal. Chem. 2005, 77, 7462–7471. [Google Scholar] [CrossRef]
- Yan, X.; Zhu, W.; Wang, Y.; Wang, Y.; Kong, D.; Li, M. “Coffee Ring” fabrication and its application in Aflatoxin detection based on SERS. Chemosensors 2023, 11, 22. [Google Scholar] [CrossRef]
- Rourke-Funderburg, A.S.; Walter, A.B.; Carroll, B.; Mahadevan-Jansen, A.; Locke, A.K. Development of a low-cost paper-based platform for coffee ring-assisted SERS. ACS Omega 2023, 8, 33745–33754. [Google Scholar] [CrossRef]
- Deriu, C.; Conticello, I.; Mebel, A.M.; McCord, B. Micro solid phase extraction surface-enhanced Raman spectroscopy (μ-SPE/SERS) screening test for the detection of the synthetic cannabinoid JWH-018 in oral fluid. Anal. Chem. 2019, 91, 4780–4789. [Google Scholar] [CrossRef]
- de Oliveira Penido, C.A.F.; Pacheco, M.T.T.; Lednev, I.K.; Silveira, L., Jr. Raman spectroscopy in forensic analysis: Identification of cocaine and other illegal drugs of abuse. Raman Spectrosc. 2016, 47, 28–38. [Google Scholar] [CrossRef]
- Soper, S.A.; Kuwana, T. Matrix-isolated surface-enhanced Raman spectroscopy (SERS): The role of the supporting matrix. Appl. Spectrosc. 1989, 43, 1180–1197. [Google Scholar] [CrossRef]
- Yang, C.W.; Zhang, X.; Yuan, L.; Wang, Y.K.; Sheng, G.P. Deciphering the microheterogeneous repartition effect of environmental matrix on surface-enhanced Raman spectroscopy (SERS) analysis for pollutants in natural waters. Water Res. 2023, 232, 119668. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Johns, A.J.; Neupane, B.; Phan, H.T.; Cwiertny, D.M.; Forbes, T.Z.; Haes, A.J. Matrix-independent surface-enhanced Raman scattering detection of uranyl using electrospun amidoximated polyacrylonitrile mats and gold nanostars. Anal. Chem. 2018, 90, 6766–6772. [Google Scholar] [CrossRef] [PubMed]
- Erkok, S.D.; Gallois, R.; Leegwater, L.; Gonzalez, P.C.; van Asten, A.; McCord, B. Combining surface-enhanced Raman spectroscopy (SERS) and paper spray mass spectrometry (PS-MS) for illicit drug detection. Talanta 2024, 278, 126414. [Google Scholar] [CrossRef]
- Fedick, P.W.; Morato, N.; Cooks, R.G. Identification and confirmation of fentanyl on paper using portable surface enhanced Raman spectroscopy and paper spray Ionization mass spectrometry. J. Am. Mass Spectrom. 2020, 31, 735–741. [Google Scholar] [CrossRef]
- Evans-Nguyen, K.; Stelmack, A.R.; Clowser, P.C.; Holtz, J.M.; Mulligan, C.C. Fieldable mass spectrometry for forensic science, homeland security, and defense applications. Mass Spectrom. Rev. 2021, 40, 628–646. [Google Scholar] [CrossRef]
50 ng DPE | 50 ng DPE + AuNPs | |||
Position | Before PSI | After PSI | Before PSI | After PSI |
P1 (sampling position) | 2497 ± 25 (~1.35 × 105) | 4427 ± 40 (~2.39 × 105) | 9418 ± 37 (~5.09 × 105) | 15,635 ± 41 (~8.45 × 105) |
P2 (middle) | 598 ± 30 | 4249 ± 57 | 2215 ± 32 | 12,320 ± 36 |
P3 (tip) | 164 ± 54 | 4004 ± 60 | 85 ± 34 | 11,718 ± 33 |
% RSD | ~114 | ~5 | ~125 | ~16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adehinmoye, A.A.; Bondzie, E.H.; Driskell, J.D.; Mulligan, C.C.; Kim, J.-H. Enhanced Sensitivity and Homogeneity of SERS Signals on Plasmonic Substrate When Coupled to Paper Spray Ionization–Mass Spectrometry. Chemosensors 2024, 12, 175. https://doi.org/10.3390/chemosensors12090175
Adehinmoye AA, Bondzie EH, Driskell JD, Mulligan CC, Kim J-H. Enhanced Sensitivity and Homogeneity of SERS Signals on Plasmonic Substrate When Coupled to Paper Spray Ionization–Mass Spectrometry. Chemosensors. 2024; 12(9):175. https://doi.org/10.3390/chemosensors12090175
Chicago/Turabian StyleAdehinmoye, Adewale A., Ebenezer H. Bondzie, Jeremy D. Driskell, Christopher C. Mulligan, and Jun-Hyun Kim. 2024. "Enhanced Sensitivity and Homogeneity of SERS Signals on Plasmonic Substrate When Coupled to Paper Spray Ionization–Mass Spectrometry" Chemosensors 12, no. 9: 175. https://doi.org/10.3390/chemosensors12090175
APA StyleAdehinmoye, A. A., Bondzie, E. H., Driskell, J. D., Mulligan, C. C., & Kim, J. -H. (2024). Enhanced Sensitivity and Homogeneity of SERS Signals on Plasmonic Substrate When Coupled to Paper Spray Ionization–Mass Spectrometry. Chemosensors, 12(9), 175. https://doi.org/10.3390/chemosensors12090175