Point-of-Care Testing Kit for the Detection of Hexavalent Chromium by Carbohydrazide-Derived Graphitic Carbon Nitride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Synthesis of g-C3N4
2.3. Characterizations
2.4. Detection of Cr(VI) Ions Using the Spectrofluorometric Method
2.5. Real Sample Analysis
2.6. Fabrication of the POCT Kit
2.7. Detection of Cr(VI) Ions Using Smartphone-Assisted POCT Kit
3. Results and Discussion
3.1. Absorption and Emission Behaviors of g-C3N4
3.2. FT-IR Vibrational Spectrum and TGA Analysis of g-C3N4
3.3. Morphology, Shape, and Size Analysis of g-C3N4
3.4. Raman Vibrational and XPS Spectral Analysis of g-C3N4
3.5. Effect of pH and Time
3.6. Quantum Yield of g-C3N4
3.7. Absorption Behavior of g-C3N4 and Cr(VI) Ions Mixture
3.8. Sensing of Cr(VI) Ions by Spectrofluorometry
3.9. Morphology, Shape, and Size Analysis of the g-C3N4 and Cr(VI) Ions Mixture
3.10. Sensing Mechanism
3.11. Selectivity Study
3.12. Real Samples Analysis
3.13. Smartphone-Assisted POCT Kit for On-Site Detection of Cr(VI) Ions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández-Luqueño, F.; López-Valdez, F.; Gamero-Melo, P.; Luna-Suárez, S.; Aguilera-González, E.; Martínez, A.; García-Guillermo, M.; Hernández-Martínez, G.; Herrera-Mendoza, R.; Álvarez-Garza, M.; et al. Heavy Metal Pollution in Drinking Water—A Global Risk for Human Health: A Review. Afr. J. Environ. Sci. Technol. 2013, 7, 567–584. [Google Scholar]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Lallu, K.R.; John, S.; Muraleedharan, K.R.; Gireeshkumar, T.R.; Udayakrishnan, P.B.; Mathew, D.; Mathew, S.; Revichandran, C.; Nair, M.; Parameswaran, P.S.; et al. Input-Export Fluxes of Heavy Metals in the Cochin Estuary, Southwest Coast of India. Environ. Sci. Pollut. Res. 2023, 30, 2771–2786. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Herschy, R.W. Water Quality for Drinking: WHO Guidelines. Encycl. Earth Sci. Ser. 2012, 876–883. [Google Scholar] [CrossRef]
- Hsiang, M.C.; Sung, Y.H.; Huang, S. Da Direct and Simultaneous Determination of Arsenic, Manganese, Cobalt and Nickel in Urine with a Multielement Graphite Furnace Atomic Absorption Spectrometer. Talanta 2004, 62, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.F.; Hou, C.J.; Mei, Y.; Huo, D.Q.; Fa, H.B. Ultra-Sensitive Fluorescence Determination of Chromium(VI) in Aqueous Solution Based on Selectively Etching of Protein-Stabled Gold Nanoclusters. RSC Adv. 2016, 6, 104693–104698. [Google Scholar]
- Hagendorfer, H.; Goessler, W. Separation of Chromium(III) and Chromium(VI) by Ion Chromatography and an Inductively Coupled Plasma Mass Spectrometer as Element-Selective Detector. Talanta 2008, 76, 656–661. [Google Scholar] [CrossRef]
- Posta, J.; Berndt, H.; Luo, S.K.; Schaldach, G. High-Performance Flow Flame Atomic Absorption Spectrometry for Automated On-Line Separation and Determination of Cr(III)/Cr(VI) and Preconcentration of Cr(VI). Anal. Chem. 1993, 65, 2590–2595. [Google Scholar] [CrossRef]
- Jen, J.F.; Ou-Yang, G.L.; Chen, C.S.; Yang, S.M. Simultaneous Determination of Chromium(III) and Chromium(VI) With Reversed-Hase Ion-Pair High-Performance Liquid Chromatography. Analyst 1981, 118, 1281–1284. [Google Scholar] [CrossRef]
- Babazadeh, S.; Bisauriya, R.; Carbone, M.; Roselli, L.; Cecchetti, D.; Bauer, E.M.; Sennato, S.; Prosposito, P.; Pizzoferrato, R. Colorimetric Detection of Chromium(VI) Ions in Water Using Unfolded-Fullerene Carbon Nanoparticles. Sensors 2021, 21, 6353. [Google Scholar] [CrossRef]
- Yue, J.Y.; Song, L.P.; Ding, X.L.; Wang, Y.T.; Yang, P.; Ma, Y.; Tang, B. Ratiometric Fluorescent PH Sensor Based on a Tunable Multivariate Covalent Organic Framework. Anal. Chem. 2022, 94, 11062–11069. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.O.; Schlögl, R.; Carlsson, J.M. Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and Their Use as Metal-Free Catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef]
- Huang, G.; Li, K.; Luo, Y.; Zhang, Q.; Pan, Y.; Gao, H. Hydrothermal Treatment for Constructing K Doping and Surface Defects in G-C3N4 Nanosheets Promote Photocatalytic Hydrogen Production. Acta Chim. Sin. 2024, 82, 314–322. [Google Scholar] [CrossRef]
- Lin, Y.; Li, L.; Shi, Z.; Zhang, L.; Li, K.; Chen, J.; Wang, H.; Lee, J.M. Catalysis with Two-Dimensional Metal-Organic Frameworks: Synthesis, Characterization, and Modulation. Small 2024, 20, 2309841. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Ma, Y.; Cui, F.; Tian, Y.; Zhu, G. Regulating the Hydrogenation Selectivity of Platinum Using a Two-Dimensional Zeolite. Sci. China Mater. 2024, 67, 2135–2141. [Google Scholar] [CrossRef]
- Dong, F.; Wu, L.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S.C. Efficient Synthesis of Polymeric G-C3N4 Layered Materials as Novel Efficient Visible Light Driven Photocatalysts. J. Mater. Chem. 2011, 21, 15171–15174. [Google Scholar] [CrossRef]
- Zhang, X.; Ong’achwa Machuki, J.; Pan, W.; Cai, W.; Xi, Z.; Shen, F.; Zhang, L.; Yang, Y.; Gao, F.; Guan, M. Carbon Nitride Hollow Theranostic Nanoregulators Executing Laser-Activatable Water Splitting for Enhanced Ultrasound/Fluorescence Imaging and Cooperative Phototherapy. ACS Nano 2020, 14, 4045–4060. [Google Scholar] [CrossRef]
- Wei, S.; Yang, G.; Niu, S.; Ma, Z.; Jiang, J.; Liu, K.; Huang, Y.; Wang, H.; Cai, Y.; Li, Q. Functionalized Nitrogen Doping Induced Manganese Oxyhydroxide Rooted in Manganese Sesquioxide Rod for Robust Oxygen Reduction Electrocatalysis. J. Alloys Compd. 2024, 976, 173071. [Google Scholar] [CrossRef]
- Mahmud, M.; Rahman, A.F.M.M.; Salem, K.S.; Bari, M.L.; Qiu, H. Architecting Ultrathin Graphitic C3N4Nanosheets Incorporated PVA/Gelatin Bionanocomposite for Potential Biomedical Application: Effect on Drug Delivery, Release Kinetics, and Antibacterial Activity. ACS Appl. Bio Mater. 2022, 5, 5126–5139. [Google Scholar] [CrossRef]
- Sun, W.; Wang, R.; Li, L.; Zhao, J.; Liu, B. Ultra-High Capacity and Anti-Interference for Cr(VI) Removal by Tannin-Polyvinylimine Modified Graphite Carbon Nitride. J. Environ. Chem. Eng. 2024, 12, 113131. [Google Scholar] [CrossRef]
- Zou, L.R.; Huang, G.F.; Li, D.F.; Liu, J.H.; Pan, A.L.; Huang, W.Q. A Facile and Rapid Route for Synthesis of G-C3N4 Nanosheets with High Adsorption Capacity and Photocatalytic Activity. RSC Adv. 2016, 6, 86688–86694. [Google Scholar] [CrossRef]
- Chen, X.; Kuo, D.H.; Lu, D. Nanonization of G-C3N4 with the Assistance of Activated Carbon for Improved Visible Light Photocatalysis. RSC Adv. 2016, 6, 66814–66821. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, L.; Xing, J.; Utama, M.I.B.; Lu, X.; Du, K.; Li, Y.; Hu, X.; Wang, S.; Genç, A.; et al. High-Yield Synthesis and Optical Properties of g-C3N4. Nanoscale 2015, 7, 12343–12350. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Ji, Z.; Wu, J.; Shen, X.; Wang, J.; Kong, L.; Liu, M.; Song, C. G-C3N4/AgBr Nanocomposite Decorated with Carbon Dots as a Highly Efficient Visible-Light-Driven Photocatalyst. J. Colloid Interface Sci. 2017, 502, 24–32. [Google Scholar] [CrossRef]
- Sumathi, M.; Prakasam, A.; Anbarasan, P.M. High Capable Visible Light Driven Photocatalytic Activity of WO3/g-C3N4 Hetrostructure Catalysts Synthesized by a Novel One Step Microwave Irradiation Route. J. Mater. Sci. Mater. Electron. 2019, 30, 3294–3304. [Google Scholar] [CrossRef]
- He, L.; Fei, M.; Chen, J.; Tian, Y.; Jiang, Y.; Huang, Y.; Xu, K.; Hu, J.; Zhao, Z.; Zhang, Q.; et al. Dataset of Emission and Excitation Spectra, UV–Vis Absorption Spectra, and XPS Spectra of Graphitic C3N4. Data Br. 2018, 21, 501–510. [Google Scholar] [CrossRef]
- Qiao, F.; Wang, J.; Ai, S.; Li, L. As a New Peroxidase Mimetics: The Synthesis of Selenium Doped Graphitic Carbon Nitride Nanosheets and Applications on Colorimetric Detection of H2O2 and Xanthine. Sens. Actuators B Chem. 2015, 216, 418–427. [Google Scholar] [CrossRef]
- Tan, L.; Xu, J.; Zhang, X.; Hang, Z.; Jia, Y.; Wang, S. Synthesis of G-C3N4/CeO2 Nanocomposites with Improved Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. Appl. Surf. Sci. 2015, 356, 447–453. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, H.; Wu, H.; Wang, B.; Zhao, H.; Tan, M. Fluorescent Carbon Dots from Beer for Breast Cancer Cell Imaging and Drug Delivery. Anal. Methods 2015, 7, 8911–8917. [Google Scholar] [CrossRef]
- Zhu, B.; Xia, P.; Ho, W.; Yu, J. Isoelectric Point and Adsorption Activity of Porous G-C3N4. Appl. Surf. Sci. 2015, 344, 188–195. [Google Scholar] [CrossRef]
- Rhys Williams, A.T.; Winfield, S.A.; Miller, J.N. Relative Fluorescence Quantum Yields Using a Computer-Controlled Luminescence Spectrometer. Analyst 1983, 108, 1067–1071. [Google Scholar] [CrossRef]
- Alaghbari, E.S.; Al-shawafi, W.; Al-areqi, N.A.S. Kinetics and Retention Chromatographic of Chromium (VI) Sorption from Aqueous Solution Using Roasted Powder of Date Pits. Int. J. Appl. Sci. Eng. Res. 2016, 5, 493–508. [Google Scholar]
- Mahmood, S. Biological Synthesis and Characterization of Chromium (III) Oxide Nanoparticles Zaheer. Eng. Appl. Sci. Lett. 2018, 1, 23–29. [Google Scholar]
- Alrehaily, L.M.; Joseph, J.M.; Musa, A.Y.; Guzonas, D.A.; Wren, J.C. Gamma-Radiation Induced Formation of Chromium Oxide Nanoparticles from Dissolved Dichromate. Phys. Chem. Chem. Phys. 2013, 15, 98–107. [Google Scholar] [CrossRef]
- Ghotekar, S.; Pansambal, S.; Bilal, M.; Pingale, S.S.; Oza, R. Environmentally Friendly Synthesis of Cr2O3 Nanoparticles: Characterization, Applications and Future Perspective—A Review. Case Stud. Chem. Environ. Eng. 2021, 3, 100089. [Google Scholar] [CrossRef]
- Li, H.J.; Sun, B.W.; Sui, L.; Qian, D.J.; Chen, M. Preparation of Water-Dispersible Porous g-C3N4 with Improved Photocatalytic Activity by Chemical Oxidation. Phys. Chem. Chem. Phys. 2015, 17, 3309–3315. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Xie, Y.; Bi, J.; Li, Y.; Song, Y.; Cheng, S.; Li, D.; Tan, M. Facile One-Step Synthesis of Highly Luminescent N-Doped Carbon Dots as an Efficient Fluorescent Probe for Chromium(VI) Detection Based on the Inner Filter Effect. New J. Chem. 2018, 42, 3729–3735. [Google Scholar] [CrossRef]
- Huang, S.; Yang, E.; Yao, J.; Chu, X.; Liu, Y.; Xiao, Q. Nitrogen, Phosphorus and Sulfur Tri-Doped Carbon Dots Are Specific and Sensitive Fluorescent Probes for Determination of Chromium(VI) in Water Samples and in Living Cells. Microchim. Acta 2019, 186, 851. [Google Scholar] [CrossRef]
Real Sample | Cr(VI) Ions Spiked (µM) | Cr(VI) Ions Found (µM) | Recovery (%) |
---|---|---|---|
Tap water | 0 | 0 | 0 |
1.2 | 1.19 ± 0.03 | 99.2 ± 0.3 | |
1.6 | 1.55 ± 0.02 | 96.87 ± 0.12 | |
Pond water | 0 | 0 | 0 |
1.2 1.6 | 1.24 ± 0.03 1.58 ± 0.01 | 103.3 ± 0.2 98.7 ± 0.3 | |
River water | 0 | 0 | 0 |
1.2 | 1.18 ± 0.03 | 98.33 ± 0.14 | |
1.6 | 1.54 ± 0.02 | 96.25 ± 0.13 | |
Industry wastewater | 0 | 0 | 0 |
1.2 1.6 | 1.22 ± 0.04 1.53 ± 0.05 | 101.6 ± 0.3 95.6 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruthupandi, M.; Lee, N.Y. Point-of-Care Testing Kit for the Detection of Hexavalent Chromium by Carbohydrazide-Derived Graphitic Carbon Nitride. Chemosensors 2024, 12, 180. https://doi.org/10.3390/chemosensors12090180
Maruthupandi M, Lee NY. Point-of-Care Testing Kit for the Detection of Hexavalent Chromium by Carbohydrazide-Derived Graphitic Carbon Nitride. Chemosensors. 2024; 12(9):180. https://doi.org/10.3390/chemosensors12090180
Chicago/Turabian StyleMaruthupandi, Muniyandi, and Nae Yoon Lee. 2024. "Point-of-Care Testing Kit for the Detection of Hexavalent Chromium by Carbohydrazide-Derived Graphitic Carbon Nitride" Chemosensors 12, no. 9: 180. https://doi.org/10.3390/chemosensors12090180
APA StyleMaruthupandi, M., & Lee, N. Y. (2024). Point-of-Care Testing Kit for the Detection of Hexavalent Chromium by Carbohydrazide-Derived Graphitic Carbon Nitride. Chemosensors, 12(9), 180. https://doi.org/10.3390/chemosensors12090180