AIPE-Active Neutral Ir(III) Complexes as Bi-Responsive Luminescent Chemosensors for Sensing Picric Acid and Fe3+ in Aqueous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Characterization of Complexes
2.3. Methods for Test of AIPE and Detection of PA and Fe3+
3. Results and Discussion
3.1. Photophysical Properties
3.2. AIPE Properties
3.3. Sensing of PA
3.4. Sensing of Fe3+
3.5. Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, T.; Hu, J.; Zhou, C.; Wang, Y.; Zhang, M. Luminescent metal-organic frameworks for nitro explosives detection. Sci. China Chem. 2016, 59, 929–947. [Google Scholar] [CrossRef]
- Taniya, O.S.; Khasanov, A.F.; Sadieva, L.K.; Santra, S.; Nikonov, I.L.; Al-lthawi, W.K.A.; Kovalev, I.S.; Kopchuk, D.S.; Zyryanov, G.V.; Ranu, B.C. Polymers and polymer-based materials for the detection of (nitro-)explosives. Materials 2023, 16, 6333. [Google Scholar] [CrossRef]
- Li, L.; Bi, X.; Zhen, M.; Ren, Y.; Zhang, L.; You, T. Recent advances in analytical sensing detection of heavy metal ions based on covalent organic frameworks nanocomposites. TrAC Trends Anal. Chem. 2024, 171, 117488. [Google Scholar] [CrossRef]
- Li, T.; Shao, Y.; Zhang, S.; Qin, J.; Fan, L.; Liu, L.; Wang, B.; Yang, Z.; Wang, Y. Two dinuclear Zn(II) complexes for the fluorescent detection of 2,4,6-trinitrophenol. J. Lumin. 2017, 181, 345–351. [Google Scholar] [CrossRef]
- Agarwal, A.; Bhatta, R.P.; Kachwal, V.; Laskar, I.R. Controlling the sensitivity and selectivity for the detection of nitro-based explosives by modulating the electronic substituents on the ligand of AIPE-active cyclometalated iridium(III) complexes. Dalton Trans. 2023, 52, 14182–14193. [Google Scholar] [CrossRef]
- Lin, L.; Rong, M.; Lu, S.; Song, X.; Zhong, Y.; Yan, J.; Wang, Y.; Chen, X. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale 2015, 7, 1872–1878. [Google Scholar] [CrossRef] [PubMed]
- Nayab, P.S.; Shkir, M. A dual responsive colorimetric and fluorescent reversible turn-on chemosensor for iron (Fe3+): Computational and spectroscopic investigations. Sens. Actuators B Chem. 2017, 245, 395–405. [Google Scholar] [CrossRef]
- Du, J.-L.; Zhang, X.-Y.; Li, C.-P.; Gao, J.-P.; Hou, J.-X.; Jing, X.; Mu, Y.-J.; Li, L.-J. A bi-functional luminescent Zn(II)-MOF for detection of nitroaromatic explosives and Fe3+ ions. Sens. Actuators B Chem. 2018, 257, 207–213. [Google Scholar] [CrossRef]
- Çelik, G.G.; Şenkuytu, E.; Şahin, O.; Serin, S. The new water-soluble Schiff base derivative fluorometric chemosensor with highly selective and instantly sensitivity for Fe3+ ion detection in aqueous media. Inorg. Chim. Acta 2021, 527, 120556. [Google Scholar] [CrossRef]
- Das, P.; Das, M.; Biswas, R.; Laha, S.; Samanta, B.C.; Maity, T. Morphological adaptability through structural alterations in an AIE active novel chemosensor with Al(III), Fe(III), and gas phase/aqueous phase TNP recognition ability. New J. Chem. 2024, 48, 5820–5833. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Zhang, J. Study on a highly selective fluorescent chemosensor for Fe3+ based on 1,3,4-oxadiazole and phosphonic acid. Sens. Actuators B Chem. 2014, 200, 259–268. [Google Scholar] [CrossRef]
- Kagit, R.; Yildirim, M.; Ozay, O.; Yesilot, S.; Ozay, H. Phosphazene based multicentered naked-eye fluorescent sensor with high selectivity for Fe3+ ions. Inorg. Chem. 2014, 53, 2144–2151. [Google Scholar] [CrossRef]
- Zhu, X.; Duan, Y.; Li, P.; Fan, H.; Han, T.; Huang, X. A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron(III), iron(II), and copper(II) ions. Anal. Methods 2019, 11, 642–647. [Google Scholar] [CrossRef]
- Liu, W.; Yang, H.; Zhang, Y. A two-fold interpenetrated 2D Zn (II) coordination polymer for sensitive and stable sensing of Fe3+/nitrofurantoin. Polyhedron 2024, 248, 116775. [Google Scholar] [CrossRef]
- Ma, D.-L.; Lin, S.; Wang, W.; Yang, C.; Leung, C.-H. Luminescent chemosensors by using cyclometalated iridium(III) complexes and their applications. Chem. Sci. 2017, 8, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.-S.; Zhang, J.-T.; Vellaisamy, K.; Ma, D.-L.; Leung, C.-H. Recent progress and developments of iridium-based compounds as probes for environmental analytes. Dalton Trans. 2018, 47, 13314–13317. [Google Scholar] [CrossRef]
- Jing, S.; Wu, X.; Niu, D.; Wang, J.; Leung, C.-H.; Wang, W. Recent advances in organometallic NIR iridium(III) complexes for detection and therapy. Molecules 2024, 29, 256. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Qian, M.; Yang, X.; Ma, S.; Li, H. Recent advances of the cyclometalated iridium(III) complexes for electrochemiluminescence sensing. Dyes Pigm. 2025, 232, 112493. [Google Scholar] [CrossRef]
- Manimaran, B.; Thanasekaran, P.; Rajendran, T.; Lin, R.-J.; Chang, I.-J.; Lee, G.-H.; Peng, S.-M.; Rajagopal, S.; Lu, K.-L. Luminescence enhancement induced by aggregation of alkoxy-bridged rhenium(I) molecular rectangles. Inorg. Chem. 2002, 41, 5323–5325. [Google Scholar] [CrossRef]
- Shan, G.-G.; Zhang, L.-Y.; Li, H.-B.; Wang, S.; Zhu, D.-X.; Li, P.; Wang, C.-G.; Su, Z.-M.; Liao, Y. A cationic iridium(III) complex showing aggregation-induced phosphorescent emission (AIPE) in the solid state: Synthesis, characterization and properties. Dalton Trans. 2012, 41, 523–530. [Google Scholar] [CrossRef]
- Shen, W.; Yan, L.; Tian, W.; Cui, X.; Qi, Z.; Sun, Y. A novel aggregation induced emission active cyclometalated Ir(III) complex as a luminescent probe for detection of copper(II) ion in aqueous solution. J. Lumin. 2016, 177, 299–305. [Google Scholar] [CrossRef]
- Chao, D.; Zhang, Y. A water–soluble cationic Ir(III) complex for turn–on sensing of ClO4− based on aggregation–induced emission. Sens. Actuators B Chem. 2017, 245, 599–604. [Google Scholar] [CrossRef]
- Di, L.; Xing, Y.; Yang, Z.; Xia, Z. Ultrabright AIE of Ir(III) complexes achieving expeditious monitoring of oxygen and high-definition development of latent fingerprints. Sens. Actuators B Chem. 2022, 350, 130894. [Google Scholar] [CrossRef]
- Yang, C.; Wen, L.-L.; Shan, G.-G.; Sun, H.-Z.; Mao, H.-T.; Zhang, M.; Su, Z.-M. Di-/trinuclear cationic Ir(III) complexes: Design, synthesis and application for highly sensitive and selective detection of TNP in aqueous solution. Sens. Actuators B Chem. 2017, 244, 314–322. [Google Scholar]
- Che, W.; Li, G.; Liu, X.; Shao, K.; Zhu, D.; Su, Z.; Bryce, M.R. Selective sensing of 2,4,6-trinitrophenol (TNP) in aqueous media with “aggregation-induced emission enhancement” (AIEE)-active iridium(III) complexes. Chem. Commun. 2018, 54, 1730–1733. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-W.; Xu, Y.-N.; Qin, C.-Y.; Wang, Z.-N.; Wu, C.-J.; Li, Y.-H.; Wang, S.; Zhang, K.Y.; Huang, W. Simple fluorene oxadiazole-based Ir(III) complexes with AIPE properties: Synthesis, explosive detection and electroluminescence studies. Dalton Trans. 2019, 48, 13305–13314. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Ma, Q.; Ma, Z.; Duan, Q.; Lü, X.; Qiu, N.; Fei, T.; Su, Z. Phosphorescent iridium(III) complex based photoluminescence sensor for sensitive and selective detection of picric acid. Dyes Pigm. 2020, 172, 107799. [Google Scholar] [CrossRef]
- Hou, X.-G.; Wu, Y.; Cao, H.-T.; Sun, H.-Z.; Li, H.-B.; Shan, G.-G.; Su, Z.-M. A cationic iridium(III) complex with aggregation-induced emission (AIE) properties for highly selective detection of explosives. Chem. Commun. 2014, 50, 6031–6034. [Google Scholar] [CrossRef] [PubMed]
- Sathish, V.; Ramdass, A.; Velayudham, M.; Lu, K.-L.; Thanasekaran, P.; Rajagopal, S. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives. Dalton Trans. 2017, 46, 16738–16769. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-S.; Yu, Q.; Zhang, J.-W.; Cui, G.-H. Four dual-functional luminescent Zn(II)-MOFs based on 1,2,4,5-benzenetetracarboxylic acid with pyridylbenzimidazole ligands for detection of iron(III) ions and acetylacetone. CrystEngComm 2021, 23, 1604–1615. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Ruan, J.-X.; Ma, D.-S.; Gao, J.-S.; Liu, Y.-F.; Yu, Y.-H. Two series of luminescent phosphonate coordination polymers of lanthanides for sensing ketones and Fe3+ in water. Polyhedron 2022, 216, 115694. [Google Scholar] [CrossRef]
- Li, Z.; Hou, J.-T.; Wang, S.; Zhu, L.; He, X.; Shen, J. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications. Coord. Chem. Rev. 2022, 469, 214695. [Google Scholar] [CrossRef]
- Temram, T.; Klaimanee, E.; Saithong, S.; Amornpitoksuk, P.; Phongpaichit, S.; Ratanaphan, A.; Tantirungrotechai, Y.; Leesakul, N. Iridium(III) complexes based on cyanomethane and cyanamide ligands with luminescence quenching properties for Fe(III) sensing and biological activities. Polyhedron 2023, 243, 116540. [Google Scholar] [CrossRef]
- Yan, Y.; Jia, W.; Zhang, L.; Liu, C. Fluorophenyl-modified AIPE-active cationic Pt(II) complexes for detecting picric acid in aqueous media. Dyes Pigm. 2023, 220, 111719. [Google Scholar] [CrossRef]
- Yan, Y.; Jia, W.; Cai, R.; Liu, C. An AIPE-active fluorinated cationic Pt(II) complex for efficient detection of picric acid in aqueous media. Chin. Chem. Lett. 2024, 35, 108819. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, Y.; Cai, R.; Li, X.-N.; Liu, C. Diphenylamino-modified neutral Pt(II) complexes: Their aggregation-induced phosphorescent emission and picric acid-sensing properties. Materials 2024, 17, 4366. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Chen, Y.; Li, X.-N.; Yan, Y.-Y.; Liu, C. Aggregation-induced emission-active iridium(III) complexes for sensing picric acid in water. Chemosensors 2023, 11, 177. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Shi, Y.; Liu, C. Carbazolyl-modified neutral Ir(III) complexes for efficient detection of picric acid in aqueous media. Sensors 2024, 24, 4074. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shi, Y.; Gao, Z.; Wang, L.; Tang, Y.; Liu, J.; Liu, C. Supramolecular copolymers under kinetic, thermodynamic, or pathway-switching control. Angew. Chem. Int. Ed. 2023, 62, e202302581. [Google Scholar] [CrossRef]
- Chen, Y.; Wan, Q.; Shi, Y.; Tang, B.; Che, C.-M.; Liu, C. Three-component multiblock 1D supramolecular copolymers of Ir(III) complexes with controllable sequences. Angew. Chem. Int. Ed. 2023, 62, e202312844. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Li, Y.; Yang, C.; Wu, H.; Qin, J.; Cao, Y. Phosphoryl/sulfonyl-substituted iridium complexes as blue phosphorescent emitters for single-layer blue and white organic light-emitting diodes by solution process. Chem. Mater. 2012, 24, 4581–4587. [Google Scholar] [CrossRef]
- Yun, H.-J.; Kim, K.-H.; Kang, S.-H.; Kim, J.-J.; Kim, Y.-H. Deep-blue phosphorescent emitters with phosphoryl groups for organic light-emitting diodes by solution processes. Isr. J. Chem. 2014, 54, 993–998. [Google Scholar] [CrossRef]
- Yi, C.; Tian, W.; Song, B.; Zheng, Y.; Qi, Z.; Qi, Q.; Sun, Y. A new turn-off fluorescent chemosensor for iron (III) based on new diphenylfluorenes with phosphonic acid. J. Lumin. 2013, 141, 15–22. [Google Scholar] [CrossRef]
- Verma, T.; Verma, P.; Singh, U.P. A multi responsive phosphonic acid based fluorescent sensor for sensing Fe3+, benzaldehyde and antibiotics. Microchem. J. 2023, 191, 108771. [Google Scholar] [CrossRef]
- Yu, H.; Liu, C.; Lv, X.; Xiu, J.; Zhao, J. Effect of substituents on properties of diphenylphosphoryl-substituted bis-cyclometalated Ir(III) complexes with a picolinic acid as ancillary ligand. Dyes Pigm. 2017, 145, 136–143. [Google Scholar] [CrossRef]
- Chuvashov, R.D.; Zhilina, E.F.; Lugovik, K.I.; Baranova, A.A.; Khokhlov, K.O.; Belyaev, D.V.; Eddin, M.Z.; Rusinov, G.L.; Verbitskiy, E.V.; Charushin, V.N. Trimethylsilylethynyl-substituted pyrene doped materials as improved fluorescent sensors towards nitroaromatic explosives and related compounds. Chemosensors 2023, 11, 167. [Google Scholar] [CrossRef]
- Ouyang, T.; Guo, X.; Cui, Q.; Zhang, W.; Dong, W.; Fei, T. Conjugated polymer nanoparticles based on anthracene and tetraphenylethene for nitroaromatics detection in aqueous phase. Chemosensors 2022, 10, 366. [Google Scholar] [CrossRef]
- Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
- Thippeswamy, M.S.; Naik, L.; Maridevarmath, C.V.; Savanur, H.M.; Malimath, G.H. Studies on the characterisation of thiophene substituted 1,3,4-oxadiazole derivative for the highly selective and sensitive detection of picric acid. J. Mol. Struct. 2022, 1264, 133274. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Shi, C.; Yu, M.; Wei, L.; Ni, Z. Nanomolar colorimetric quantitative detection of Fe3+ and PPi with high selectivity. Spectrochim. Acta Part A 2016, 159, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Elmas, S.N.K.; Karagoz, A.; Arslan, F.N.; Yilmaz, I. Propylimidazole functionalized coumarin derivative as dual responsive fluorescent chemoprobe for picric acid and Fe3+ recognition: DFT and natural spring water applications. J. Fluoresc. 2022, 32, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Xu, J.; Xu, Q.; Liu, C. AIPE-Active Neutral Ir(III) Complexes as Bi-Responsive Luminescent Chemosensors for Sensing Picric Acid and Fe3+ in Aqueous Media. Chemosensors 2025, 13, 10. https://doi.org/10.3390/chemosensors13010010
Zhang Q, Xu J, Xu Q, Liu C. AIPE-Active Neutral Ir(III) Complexes as Bi-Responsive Luminescent Chemosensors for Sensing Picric Acid and Fe3+ in Aqueous Media. Chemosensors. 2025; 13(1):10. https://doi.org/10.3390/chemosensors13010010
Chicago/Turabian StyleZhang, Qinglong, Jiangchao Xu, Qiang Xu, and Chun Liu. 2025. "AIPE-Active Neutral Ir(III) Complexes as Bi-Responsive Luminescent Chemosensors for Sensing Picric Acid and Fe3+ in Aqueous Media" Chemosensors 13, no. 1: 10. https://doi.org/10.3390/chemosensors13010010
APA StyleZhang, Q., Xu, J., Xu, Q., & Liu, C. (2025). AIPE-Active Neutral Ir(III) Complexes as Bi-Responsive Luminescent Chemosensors for Sensing Picric Acid and Fe3+ in Aqueous Media. Chemosensors, 13(1), 10. https://doi.org/10.3390/chemosensors13010010