Insight into Reduction Process of Diquat on Silver and Copper Electrodes Studied Using SERS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Calculations
2.2. Materials and Instrumentation
2.3. Electrode Preparation for SERS Study
3. Results
3.1. Theoretical and Experimental Raman Spectra of Diquat
3.2. SERS Spectra of Diquat on Silver and Copper Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aroca, R. Surface-Enhanced Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 0-471-60731-2. [Google Scholar] [CrossRef]
- Moskovits, M. Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 2013, 15, 5301. [Google Scholar] [CrossRef]
- Pięta, E.; Paluszkiewicz, C.; Kwiatek, W.M.; López-Ramírez, M.R. Analyzing the Electrochemical Interaction of the Angiogenesis Inhibitor Batimastat by Surface-Enhanced Raman Spectroscopy. Chemosensors 2023, 11, 128. [Google Scholar] [CrossRef]
- Pięta, E.; Lopez-Ramirez, M.R.; Paluszkiewicz, C.; Kwiatek, W.M. Insights into the binding interactions at the nano-bio interface: Electrode potential and wavelength dependence study. Appl. Surf. Sci. 2021, 562, 150228. [Google Scholar] [CrossRef]
- Lopez-Ramirez, M.R.; Aranda Ruiz, D.; Avila Ferrer, F.J.; Centeno, S.P.; Arenas, J.F.; Otero, J.C.; Soto, J. Analysis of the Potential Dependent Surface-Enhanced Raman Scattering of p-Aminothiophenol on the Basis of MS-CASPT2 Calculations. J. Phys. Chem. C 2016, 120, 19322–19328. [Google Scholar] [CrossRef]
- Roman-Perez, J.; Centeno, S.P.; López-Ramírez, M.R.; Arenas, J.F.; Soto, J.; López-Tocón, I.; Otero, J.C. On the dual character of charged metal–molecule hybrids and the opposite behaviour of the forward and reverse CT processes. Phys. Chem. Chem. Phys. 2014, 16, 22958–22961. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ramirez, M.R.; Ruano, C.; Castro, J.L.; Arenas, J.F.; Soto, J.; Otero, J.C. Surface-Enhanced Raman Scattering of Benzoate Anion Adsorbed on Silver Nanoclusters: Evidence of the Transient Formation of the Radical Dianion. J. Phys. Chem. C 2010, 114, 7666–7672. [Google Scholar] [CrossRef]
- Jones, G.M.; Vale, J.A. Mechanisms of Toxicity, Clinical Features, and Management of Diquat Poisoning: A Review. J. Toxicol. Clin. Toxicol. 2000, 38, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Vale, J.A.; Meredith, T.J.; Buckley, B.M. Paraquat poisoning: Clinical features and immediate general management. Hum. Toxicol. 1987, 6, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Bismuth, C.; Garnier, R.; Baud, F.J.; Muszynski, J.; Keyes, C. Paraquat Poisoning. Drug Saf. 1990, 5, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Monk, P.M.S. The Viologens. Physicochemical Properties, Synthesis and Applications of the Salts of 4,4’-Bipyridine; John Wiley & Son: Chichester, UK, 1999; ISBN 978-0-471-98603-4. [Google Scholar]
- Haque, R.; Lilley, S. Infrared spectroscopic studies of charge transfer complexes of diquat and paraquat. J. Agric. Food Chem 1972, 20, 57–58. [Google Scholar] [CrossRef]
- Barker, D.J.; Cooney, R.P.; Summers, L.A. Resonance Raman spectra of radical cations of bridged diquaternary salts of 2,2′-bipyridine. J. Raman Spectrosc. 1985, 16, 265–271. [Google Scholar] [CrossRef]
- Lopez-Ramirez, M.R.; Guerrini, L.; Garcia-Ramos, J.V.; Sanchez-Cortes, S. Vibrational analysis of herbicide diquat: A normal Raman and SERS study on Ag nanoparticles. Vib. Spectrosc. 2008, 48, 58–64. [Google Scholar] [CrossRef]
- Bird, C.L.; Kuhn, A.T. Electrochemistry of the viologens. Chem. Soc. Rev. 1981, 10, 49. [Google Scholar] [CrossRef]
- Kreisig, S.; Tarazona, A.; Koglin, E. The adsorption of paraquat on silver electrode surfaces: A SERS microprobe study. Electrochim. Acta 1997, 42, 3335–3344. [Google Scholar] [CrossRef]
- Li, S.; Ling, Y.; Chen, J.; Yuan, X.; Zhang, Z. Portable Copper-Based Electrochemical SERS Sensor for Point-of-Care Testing of Paraquat and Diquat by On-Site Electrostatic Preconcentration. Langmuir 2024, 40, 15677–15687. [Google Scholar] [CrossRef]
- Rycenga, M.; Cobley, C.M.; Zeng, J.; Li, W.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Cojocaru, C.; Airinei, A.; Fifere, N. Molecular structure and modeling studies of azobenzene derivatives containing maleimide groups. SpringerPlus 2013, 2, 586. [Google Scholar] [CrossRef] [PubMed]
- Spinner, E. The vibrational spectrum of the N-methylpentadeuteropyridinium ion. Aust. J. Chem. 1967, 20, 1805–1813. [Google Scholar] [CrossRef]
- Pasquier, B.; Lebas, J.M. Contribution à l’étude vibrationnelle du biphényle. J. Chim. Phys. 1967, 64, 765–776. [Google Scholar] [CrossRef]
- Forster, M.; Girling, R.B.; Hester, R.E. Infrared, Raman and resonance Raman investigations of methylviologen and its radical cation. J. Raman Spectrosc. 1982, 12, 36–48. [Google Scholar] [CrossRef]
- Lu, T.H.; Sun, I.W. Determination of Diquat at a Nafion Film Modified Glassy Carbon Electrode Using Electrocatalytic Voltammetry. Electroanalysis 2000, 12, 605–609. [Google Scholar] [CrossRef]
- Noh, H.B.; Chandra, P.; Moon, J.O.; Shim, Y.B. In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials 2012, 33, 2600–2607. [Google Scholar] [CrossRef]
- Athira, K.; Ranjana, M.; Bharathi, M.S.S.; Narasimha Reddy, B.; Satheesh Babu, T.G.; Venugopal Rao, S.; Ravi Kumar, D.V. Aggregation induced, formaldehyde tailored nanowire like networks of Cu and their SERS activity. Chem. Phys. Lett. 2020, 748, 137390. [Google Scholar] [CrossRef]
- Qiu, H.W.; Xu, S.C.; Chen, P.X.; Gao, S.S.; Li, Z.; Zhang, C.; Jiang, S.Z.; Liu, M.; Li, H.S.; Feng, D.J. A novel surface-enhanced Raman spectroscopy substrate based on hybrid structure of monolayer graphene and Cu nanoparticles for adenosine detection. Appl. Surf. Sci. 2015, 332, 614–619. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lin, M.H.; Wang, C.Y.; Chang, Y.M.; Gwo, S. Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale. J. Am. Chem. Soc. 2015, 137, 13698–13705. [Google Scholar] [CrossRef]
- Kleinman, S.L.; Sharma, B.; Blaber, M.G.; Henry, A.I.; Valley, N.; Freeman, R.G.; Natan, M.J.; Schatz, G.C.; Van Duyne, R.P. Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy. J. Am. Chem. Soc. 2012, 135, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.I.; Ruiz, J.J.; Camacho, L.; Rodríguez-Amaro, R. Electroreduction of Heptyl Viologen on Polycrystalline Silver. J. Electrochem. Soc. 2002, 149, E440. [Google Scholar] [CrossRef]
- Millán, J.I.; Garcia-Ramos, J.V.; Sanchez-Cortes, S.; Rodríguez-Amaro, R. Adsorption of lucigenin on Ag nanoparticles studied by surface-enhanced Raman spectroscopy: Effect of different anions on the intensification of Raman spectra. J. Raman Spectrosc. 2003, 34, 227–233. [Google Scholar] [CrossRef]
- Lévi, G.; Pantigny, J.; Marsault, J.P.; Aubard, J. SER spectra of acridine and acridinium ions in colloidal silver sols. Electrolytes and PH effects. J. Raman Spectrosc. 1993, 24, 745–752. [Google Scholar] [CrossRef]
- Oh, S.T.; Kim, K.; Kim, M.S. Adsorption and surface reaction of acridine in silver sol: Surface-enhanced Raman spectroscopic study. J. Phys. Chem. 1991, 95, 8844–8849. [Google Scholar] [CrossRef]
- Monk, P.M.S.; Hodgkinson, N.M. Charge-transfer complexes of the viologens: Effects of complexation and the rate of electron transfer to methyl viologen. Electrochim. Acta 1998, 43, 245–255. [Google Scholar] [CrossRef]
- Walcarius, A.; Lamberts, L. Square wave voltammetric determination of paraquat and diquat in aqueous solution. J. Electroanal. Chem. 1996, 406, 59–68. [Google Scholar] [CrossRef]
- Heyrovský, M. The electroreduction of methyl viologen. J. Chem. Soc. Chem. Commun. 1987, 24, 1856–1857. [Google Scholar] [CrossRef]
- Srnová-Šloufová, I.; Vlčková, B.; Snoeck, T.L.; Stufkens, D.J.; Matějka, P. Surface-Enhanced Raman Scattering and Surface-Enhanced Resonance Raman Scattering Excitation Profiles of Ag-2,2′-Bipyridine Surface Complexes and of [Ru(bpy)3]2+ on Ag Colloidal Surfaces: Manifestations of the Charge-Transfer Resonance Contributions to the Overall Surface Enhancement of Raman Scattering. Inorg. Chem. 2000, 39, 3551–3559. [Google Scholar] [CrossRef]
Dication: DQ2+ | Radical Cation: DQ•+ | Neutral: DQ0 |
---|---|---|
d (C-C) = 1.48 Å | d (C-C) = 1.43 Å | d (C-C) = 1.38 Å |
α = 22.60° | α = 14.32° | α = 4.76° |
Emin (a.u.) = −573.44010 | Emin (a.u.) = −573.78443 | Emin (a.u.) = −573.96443 |
Charge = 2, singlet | Charge = 1, doublet | Charge = 0, singlet |
EHOMO (Hartree) = −0.56570 ELUMO (Hartree) = −0.39830 EnergyL-H gap (eV) = 4.56 | EHOMO (Hartree) = −0.29055 ELUMO (Hartree) = −0.19411 EnergyL-H gap (eV) = 2.62 | EHOMO (Hartree) = −0.12846 ELUMO (Hartree) = −0.02801 EnergyL-H gap (eV) = 2.73 |
λ = 295 nm, 157 nm | λ = 720 nm, 355 nm | λ = 556 nm, 310 nm |
νcalc a | νRaman b | Assignment c | |
---|---|---|---|
B3LYP/6-31+G* | Solid | Aqueous 1M | |
390 vw | 394 vw | δring | |
530 vw | 536 vw | 540 vw | γring |
726 vw | 733 vw | 734 vw | δring |
986 vw | 996 vw | ν(H2C-CH2) | |
1068 w | 1065 w | 1082 w | r(CH2) + δring |
1156 vw | δ(CH) + νring | ||
1175 vw | δ(CH) + νring | ||
1184 w | 1193 w | 1196 w | δ(CH) + ν(CH2-N) |
1282 w | 1284 vw | 1290 vw | ν(C-C) inter-ring |
1310 s | 1327 s | 1321 s | ν(C-C) inter-ring |
1440 vw | 1433 vw | 1440 vw | w(CH2) |
1460 vw | 1458 vw | 1472 vw | δ(CH2) |
1530 m | 1528 w | 1532 w | νring + ν(C=N) |
1584 s | 1577 m | 1586 m | νring + ν(C=N) |
1610 s | 1612 s | 1618 s | 8a; νring + ν(C=N) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Ramírez, M.R.; Olivares-Fernández, L.; Sanchez-Cortes, S. Insight into Reduction Process of Diquat on Silver and Copper Electrodes Studied Using SERS. Chemosensors 2025, 13, 39. https://doi.org/10.3390/chemosensors13020039
López-Ramírez MR, Olivares-Fernández L, Sanchez-Cortes S. Insight into Reduction Process of Diquat on Silver and Copper Electrodes Studied Using SERS. Chemosensors. 2025; 13(2):39. https://doi.org/10.3390/chemosensors13020039
Chicago/Turabian StyleLópez-Ramírez, María Rosa, Lucas Olivares-Fernández, and Santiago Sanchez-Cortes. 2025. "Insight into Reduction Process of Diquat on Silver and Copper Electrodes Studied Using SERS" Chemosensors 13, no. 2: 39. https://doi.org/10.3390/chemosensors13020039
APA StyleLópez-Ramírez, M. R., Olivares-Fernández, L., & Sanchez-Cortes, S. (2025). Insight into Reduction Process of Diquat on Silver and Copper Electrodes Studied Using SERS. Chemosensors, 13(2), 39. https://doi.org/10.3390/chemosensors13020039