Thiosemicarbazone- and Thiourea-Functionalized Calix[4]arenes in cone and 1,3-alternate Conformations: Receptors for the Recognition of Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Procedures
2.2. Spectrophotometric Measurements
2.3. Determination of Association Constants
2.4. Determination of Limit of Detections
3. Results
3.1. Synthetic Procedures
3.2. Screening with Ions
3.3. UV-Visible Studies of Receptor (I) with Ions
3.4. UV–Visible Studies of Receptors (II) and (III) with Copper (II) Ions
3.5. Fluorescence Studies of Receptors (IV) and (V) with Nickel (II), Cobalt (II) and Copper (II) Ions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P.A. Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038–8155. [Google Scholar] [CrossRef] [PubMed]
- Gale, P.A.; Howe, N.W.E.; Wu, X. Anion Receptor Chemistry. Chem 2016, 1, 351–422. [Google Scholar] [CrossRef]
- Yeung, M.C.-L.; Yam, V.W.-W. Luminescent Cation Sensors: From Host-Guest Chemistry, Supramolecular Chemistry to Reaction-Based Mechanisms. Chem. Soc. Rev. 2015, 44, 4192–4202. [Google Scholar] [CrossRef]
- Lo, P.; Wong, M. Extended Calix[4]arene-Based Receptors for Molecular Recognition and Sensing. Sensors 2008, 8, 5313–5335. [Google Scholar] [CrossRef]
- Bell, T.W.; Hext, N.M. Supramolecular Optical Chemosensors for Organic Analytes. Chem. Soc. Rev. 2004, 33, 589–598. [Google Scholar] [CrossRef]
- Patra, S.; Maity, D.; Gunupuru, R.; Agnihotri, P.; Paul, P. Calixarenes: Versatile Molecules as Molecular Sensors for Ion Recognition Study. J. Chem. Sci. 2012, 124, 1287–1299. [Google Scholar] [CrossRef]
- Maity, D.; Chakraborty, A.; Gunupuru, R.; Paul, P. Calix[4]arene Based Molecular Sensors with Pyrene as Fluorogenic Unit: Effect of Solvent in Ion Selectivity and Colorimetric Detection of Fluoride. Inor. Chim. Acta 2011, 372, 126–135. [Google Scholar] [CrossRef]
- Park, G.J.; You, G.R.; Choi, Y.W.; Kim, C. A Naked-Eye Chemosensor for Simultaneous Detection of Iron and Copper Ions and Its Copper Complex for Colorimetric/Fluorescent Sensing of Cyanide. Sens. Actuators B Chem. 2016, 229, 257–271. [Google Scholar] [CrossRef]
- Ferreira, J.F.; Bagatin, I.A. A Cr(VI) Selective Probe Based on a Quinoline-Amide Calix[4]arene. Spectrochim. Acta A 2018, 189, 44–50. [Google Scholar] [CrossRef]
- Quiroga-Campano, C.; Gómez-Machuca, H.; Moris, S.; Jara, P.; De la Fuente, J.R.; Pessoa-Mahana, H.; Jullian, C.; Saitz, C. Synthesis of Bifunctional Receptor for Fluoride and Cadmium Based on Calix[4]arene with Thiourea Moieties. J. Mol. Struct. 2017, 1141, 133–141. [Google Scholar] [CrossRef]
- Athar, M.; Lone, M.Y.; Jha, P.C. Recognition of Anions Using Urea and Thiourea Substituted Calixarenes: A Density Functional Theory Study of Non-Covalent Interactions. Chem. Phys. 2018, 501, 68–77. [Google Scholar] [CrossRef]
- Bhowmick, R.; Alam, R.; Mistri, T.; Das, K.K.; Katarkar, A.; Chaudhuri, K.; Ali, M. A Thiosemicarbazone Based Chemo and Fluorogenic Sensor for Zn2+ with CHEF and ESIPT Behaviour: Computational Studies and Cell Imaging Application. RSC Adv. 2016, 6, 11388–11399. [Google Scholar] [CrossRef]
- Tang, L.; Huang, Z.; Zheng, Z.; Zhong, K.; Bian, Y. A New Thiosemicarbazone-Based Fluorescence “Turn-On” Sensor for Zn2+ Recognition with a Large Stokes Shift and Its Application in Live Cell Imaging. J. Fluoresc. 2016, 26, 1535–1540. [Google Scholar] [CrossRef]
- Tang, L.; Zhou, P.; Zhang, Q.; Huang, Z.; Zhao, J.; Cai, M. A Simple Quinoline Derivatized Thiosemicarbazone as a Colorimetric and Fluorescent Sensor for Relay Recognition of Cu2+ and Sulfide in Aqueous Solution. Inorg. Chem. Commun. 2013, 36, 100–104. [Google Scholar] [CrossRef]
- Gutsche, C.D. Calixarenes Revisited; Royal Society of Chemistry: London, UK, 1998. [Google Scholar]
- Kim, J.S.; Quang, D.T. Calixarene-Derived Fluorescent Probes. Chem. Rev. 2007, 107, 3780–3799. [Google Scholar] [CrossRef]
- Kumar, N.; Pham-Xuan, Q.; Depauw, A.; Hemadi, M.; Ha-Duong, N.T.; Lefevre, J.P.; Ha-Thi, M.H.; Leray, I. New Sensitive and Selective Calixarene-Based Fluorescent Sensors for the Detection of Cs+ in an Organo-Aqueous Medium. N. J. Chem. 2017, 41, 7162–7170. [Google Scholar] [CrossRef]
- Depauw, A.; Kumar, N.; Ha-Thi, M.H.; Leray, I. Calixarene-Based Fluorescent Sensors for Cesium Cations Containing BODIPY Fluorophore. J. Phys. Chem. A. 2015, 119, 6065–6073. [Google Scholar] [CrossRef]
- Hosseinzadeh, R.; Nemati, M.; Zadmard, R.; Mohadjerani, M. Amidofluorene-Appended Lower Rim 1,3-Diconjugate of Calix[4]arene: Synthesis, Characterization and Highly Selective Sensor for Cu2+. Beilstein J. Org. Chem. 2016, 12, 1749–1757. [Google Scholar] [CrossRef]
- Qu, W.-J.; Guan, J.; Wei, T.-B.; Yan, G.-T.; Lina, Q.; Zhang, Y.-M. A Turn-On Fluorescent Sensor for Relay Recognition of Two Ions: From a F- Selective Sensor to Highly Zn2+ Selective Sensor by Tuning Electronic Effects. RSC Adv. 2016, 6, 35804–35808. [Google Scholar] [CrossRef]
- Nikolaeva, O.G.; Shepelenko, E.N.; Tikhomirova, K.S.; Revinskii, Y.V.; Dubonosov, A.D.; Bren, V.A.; Minkin, V.I. Bifunctional Fluorescent and Colorimetric ‘Naked Eye’ Aroylhydrazone Chemosensors for Hg2+ and F− Ions Detection. Mendeleev Commun. 2016, 26, 402–404. [Google Scholar] [CrossRef]
- Uahengo, V.; Zhang, Y.; Xiong, B.; Zhao, P.; Cai, P.; Rhyman, L.; Ramasami, P.; Hu, K.; Cheng, G. A Fluoro-Chromogenic Sensor Based on Organic Molecular Framework for Cu2+ and F− in Aqueous Soluble DMSO. J. Fluoresc. 2017, 27, 191–197. [Google Scholar] [CrossRef]
- Diamond, D.; McKervey, M.A. Calixarene-based sensing agents. Chem. Soc. Rev. 1996, 25, 15–24. [Google Scholar] [CrossRef]
- Ludwig, R. Calixarenes in analytical and separation chemistry. Fresenius J. Anal. Chem. 2000, 367, 103–128. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, M.H.; Mutihac, L.; Vicens, J.; Kim, J.S. Host–guest sensing by calixarenes on the surfaces. Chem. Soc. Rev. 2012, 41, 1173–1190. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, H.J.; Kim, H.M.; Kim, S.H.; Lee, J.W.; Kim, S.K.; Cho, B.R. Metal Ion Sensing Novel Calix[4]Crown Fluoroionophore with a Two-Photon Absorption Property. J. Org. Chem. 2006, 71, 8016–8022. [Google Scholar] [CrossRef]
- Kumar, M.; Nagendra Babu, J.; Bhalla, V. Fluorescent Chemosensor for Cu2+ Ion Based on Iminoanthryl Appended Calix[4]arene. J. Incl. Phenom. Macrocycl. Chem. 2010, 66, 139–145. [Google Scholar] [CrossRef]
- Sahin, O.; Yilmaz, M. Synthesis and Fluorescence Sensing Properties of Novel Pyrene-Armed Calix[4]arene Derivatives. Tetrahedron 2011, 67, 3501–3508. [Google Scholar] [CrossRef]
- Sahin, O.; Akceylan, E. A Phenanthrene-Based Calix[4]arene as a Fluorescent Sensor for Cu2+ and F−. Tetrahedron 2014, 70, 6944–6950. [Google Scholar] [CrossRef]
- Bhatti, A.A.; Oguz, M.; Memon, S.; Yilmaz, M. Dual Fluorescence Response of Newly Synthesized Naphthalene Appended Calix[4]arene Derivative Towards Cu2+ and I. J. Fluoresc. 2017, 27, 263–270. [Google Scholar] [CrossRef]
- Ragupathi, A.; Sagadevan, A.; Lin, C.-C.; Hwua, J.-R.; Hwang, K.C. Design, Synthesis, and Evaluation of a Bifunctional Receptor Based on Calix[4]arene Bearing Benzoxazolinone Group. Chem. Commun. 2016, 52, 11756–11759. [Google Scholar] [CrossRef]
- Fu, R.; Yang, Y.; Jin, W.; Gu, H.; Zeng, X.; Chai, W.; Yunsheng, M.; Wang, Q.; Yi, J.; Yuan, R. Microwave-Assisted Heteropolyanion-Based Ionic Liquid Promoted Sustainable Protocol to N-Heteroaryl Amides via N-Directing Dual Catalyzed Oxidative Amidation of Aldehydes. RSC Adv. 2016, 6, 107699–107707. [Google Scholar] [CrossRef]
- Yamaji, M.; Tomonari, K.; Ikuma, K.; Shiotari, A.; Fujisawa, Y. Blue Fluorescence from N,O-Coordinated BF2 Complexes Having Aromatic Chromophores in Solution and the Solid State. Photochem. Photobiol. Sci. 2019, 18, 2884–2892. [Google Scholar] [CrossRef]
- Abarca, B.; Ballesteros, R.; Blanco, F.; Bouillon, A.; Collot, V.; Dominguez, J.R.; Lancelot, J.C.; Rault, S. Synthesis of Novel Triazolopyridylboronic Acids and Esters. Study Potential Appl. Suzuki-Type Reactions. Tetrahedron 2004, 60, 4887–4893. [Google Scholar]
- Abarca, B.; Ballesteros, R.; Elmasnaouy, M. A Facile Route to New Potential Helicating Ligands. Tetrahedron 1998, 54, 15287–15292. [Google Scholar] [CrossRef]
- Abarca, B.; Aucejo, R.; Ballesteros, R.; Blanco, F.; García-España, E. Synthesis of Novel Fluorescent 3-Aryl- and 3-Methyl-7-Aryl-[1,2,3]Triazolo[1,5-a]Pyridines by Suzuki Cross-Coupling Reactions. Tetrahedron Lett. 2006, 47, 8101–8103. [Google Scholar] [CrossRef]
- Jullian, C.; Fernández-Sandoval, S.; Rojas-Aranguiz, M.; Gómez-Machuca, H.; Salgado-Figueroa, P.; Celis-Barros, C.; Zapata-Torres, G.; Adam, R.; Abarca, B. Detecting Ni(II) in Aqueous Solution by 3-(2-Pyridyl)-[1,2,3]Triazolo[1,5-a]Pyridine and Dimethyl-β-Cyclodextrin. Carbohydr. Polym. 2014, 107, 124–131. [Google Scholar] [CrossRef]
- Quiroga-Campano, C.; Gómez-Machuca, H.; Jullian, C.; De la Fuente, J.; Pessoa-Mahana, H.; Saitz, C. Study by Fluorescence of Calix[4]Arenes Bearing Heterocycles with Divalent Metals: Highly Selective Detection of Pb(II). J. Incl. Phenom. Macrocycl. Chem. 2014, 80, 369–375. [Google Scholar] [CrossRef]
- Gómez-Machuca, H.; Quiroga-Campano, C.; Jullian, C.; De la Fuente, J.; Pessoa-Mahana, H.; Escobar, C.A.; Dobado, J.A.; Saitz, C. Study by Fluorescence of Calix[4]Arenes Bearing Heterocycles with Anions: Highly Selective Detection of Iodide. J. Incl. Phenom. Macrocycl. Chem. 2013, 79, 161–169. [Google Scholar] [CrossRef]
- Quiroga-Campano, C.; Gómez-Machuca, H.; Moris, S.; Pessoa-Mahana, H.; Jullian, C.; Saitz, C. Synthesis of Calix[4]Arenes Bearing Thiosemicarbazone Moieties with Naphthalene Groups: Highly Selective Turn Off/On Fluorescent Sensor for Cu(II) Recognition. J. Mol. Struct. 2021, 1225, 129125. [Google Scholar] [CrossRef]
- Gómez-Machuca, H.; Quiroga-Campano, C.; Jullian, C.; Saitz, C. Bifunctional Receptor Based on Calix[4]Arene with Chromone Groups as an Efficient Colorimetric Sensor for Co2+, Cu2+, CN−, and F−. ChemistrySelect 2022, 7, e202202581. [Google Scholar] [CrossRef]
- Gómez-Machuca, H.; Quiroga-Campano, C.; Jullian, C.; Saitz, C. Design, Synthesis, and Evaluation of a Bifunctional Receptor Based on Calix[4]Arene Bearing Benzoxazolinone Group. J. Mol. Struct. 2024, 1298, 137062. [Google Scholar] [CrossRef]
- Gómez-Machuca, H.; Quiroga-Campano, C.; Pessoa-Mahana, H.; Saitz, C. Ion Sensing with a Calix[4]Arene Bifunctional Receptor with Thiosemicarbazone Moieties and Naphthalene Chromophore. J. Incl. Phenom. Macrocycl. Chem. 2024, 104, 161–170. [Google Scholar] [CrossRef]
- Job, P. Formation and Stability of Inorganic Complexes in Solution. Ann. Chim. Appl. 1928, 9, 113–203. [Google Scholar]
- Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. [Google Scholar] [CrossRef]
- Brynn Hibbert, D.; Thordarson, P. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. Chem. Commun. 2016, 52, 12792–12805. [Google Scholar] [CrossRef]
- Gutsche, C.D.; Levine, J.A.; Sujeeth, P.K. Calixarenes. 17. Functionalized Calixarenes: The Claisen Rearrangement Route. J. Org. Chem. 1985, 50, 5802. [Google Scholar] [CrossRef]
- Zhang, W.-C.; Huang, Z.-T. Synthesis of 4-tert-Butylcalix[4]Arenes Bearing Two Schiff-Base Units at the Lower Rim. Synthesis 1997, 9, 1073–1076. [Google Scholar] [CrossRef]
- Mocerino, M.; Ogden, M.I.; Pettersen, J.K.; Skelton, B.W.; White, A.H. One-Pot Selective Formylation and Claisen Rearrangement on Calix[4]Arenes. Supramol. Chem. 2006, 18, 91–95. [Google Scholar] [CrossRef]
- McGrath, J.M.; Pluth, M.D. Understanding the Effects of Preorganization, Rigidity, and Steric Interactions in Synthetic Barbiturate Receptors. J. Org. Chem. 2014, 79, 711–719. [Google Scholar] [CrossRef]
- Sykes, P. A Guidebook to Mechanism in Organic Chemistry, 6th ed.; Pearson Education Limited, Prentice-Hall: Upper Saddle River, NJ, USA, 1986. [Google Scholar]
- Santos-Figueroa, L.E.; Moragues, M.E.; Raposo, M.M.; Batista, R.M.F.; Costa, S.P.G.; Ferreira, R.C.M.; Sancenón, F.; Martínez-Máñez, R.; Ros-Lis, J.V.; Soto, J. Synthesis and Evaluation of Thiosemicarbazones Functionalized with Furyl Moieties as New Chemosensors for Anion Recognition. Org. Biomol. Chem. 2012, 10, 7418–7428. [Google Scholar] [CrossRef]
- Chrisstoffels, L.A.J.; de Jong, F.; Reinhoudt, D.N.; Sivelli, S.; Gazzola, L.; Casnati, A.; Ungaro, R. Facilitated Transport of Hydrophilic Salts by Mixtures of Anion and Cation Carriers and by Dytopic Carriers. J. Am. Chem. Soc. 1999, 121, 10142–10151. [Google Scholar] [CrossRef]
- Erdemir, S.; Yilmaz, M. Novel Triphenylamine-Appended 1,3-Alternate-Calix[4]Arenes: Synthesis and Characterization. Synth. Commun. 2013, 43, 1668–1675. [Google Scholar] [CrossRef]
- Gibson, M.S.; Bradshaw, R.W. The Gabriel Synthesis of Primary Amines. Angew. Chem. Int. Ed. Engl. 1968, 7, 919–930. [Google Scholar] [CrossRef]
- Luk’yanenko, A.P.; Alekseeva, E.A.; Basok, S.S.; Mazepa, A.V.; Gren, A.I. New synthetic approach to aminoethoxy derivatives of p-(tert-butyl)calix[4]arene. Russ. J. Org. 2011, 47, 527–529. [Google Scholar]
- Santoyo-González, F.; Torres-Pinedo, A.; Saitz, C. An Efficient synthesis of Bis(calix[4]arenes), Bis(crown ether)-substituted calix[4]arenes, Aza-Crown Calix[4]arenes, and Thiaza-Crown Calix[4]arenes. Eur. J. Org. Chem. 2000, 2000, 3587–3593. [Google Scholar] [CrossRef]
- Babu, J.N.; Vandana, B.; Manoj, K.; Hardev, S. Selective colorimetric sensing of cyanide ions over fluoride ions by calix[4]arene containing thiourea moieties. Lett. Org. Chem. 2006, 3, 787–793. [Google Scholar] [CrossRef]
- Sarkar, A.; Bhattacharyya, S.; Mukherjee, A. Colorimetric Detection of Fluoride Ions by Anthraimidazoledione-Based Sensors in the Presence of Cu(II) Ions. Dalton Trans. 2016, 45, 1166–1175. [Google Scholar] [CrossRef]
- Hung, H.-C.; Chang, Y.-Y.; Luo, L.; Hung, C.-H.; Diau, E.W.-G.; Chung, W.-S. Different Sensing Modes of Fluoride and Acetate Based on a Calix[4]Arene with 25,27-Bistriazolylmethylpyrenylacetamides. Photochem. Photobiol. Sci. 2014, 13, 370–379. [Google Scholar] [CrossRef]
- Udhayakumari, D.; Nahaa, S.; Velmathi, S. Colorimetric and Fluorescent Chemosensors for Cu2+: A Comprehensive Review from the Years 2013–2015. Anal. Methods 2017, 9, 552–578. [Google Scholar] [CrossRef]
- Arnaud-Neu, F.; Barrett, G.; Corry, D.; Cremin, S.; Ferguson, G.; Gallager, J.F.; Harris, S.J.; McKervey, M.A.; Schwing-Weill, M. Cation complexation by chemically modified calixarenes. Part 10. Thioamide derivatives of p-tert-butylcalix[4]-, [5]- and [6]-arenes with selectivity for copper, silver, cadmium and lead. X-Ray molecular structures of calix[4]arene thioamide–lead(II) and calix[4]arene amide–copper(II) complexes. J. Chem. Soc. Perkin Trans. 2 1997, 3, 575–580. [Google Scholar]
- Lee, J.Y.; Kim, S.K.; Jung, J.H.; Kim, J.S. Bifunctional Fluorescent Calix[4]Arene Chemosensor for Both a Cation and an Anion. J. Org. Chem. 2005, 70, 1463–1466. [Google Scholar] [CrossRef] [PubMed]
- Mako, T.L.; Racicot, J.M.; Levine, M. Supramolecular Luminescent Sensors. Chem. Rev. 2019, 119, 322–477. [Google Scholar] [CrossRef] [PubMed]
- Duke, R.M.; Veale, E.B.; Pfeffer, F.M.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and Fluorescent Anion Sensors: An Overview of Recent Developments in the Use of 1,8-Naphthalimide-Based Chemosensors. Chem. Soc. Rev. 2010, 39, 3936–3953. [Google Scholar] [CrossRef] [PubMed]
- Vora, M.; Dey, S.; Kongor, A.; Panchal, M.; Verma, A.; Padhiyar, N.; Jain, V.K. Design of bi-pyrene functionalized oxacalixarene probe for ratiometric detection of Fe3+ and PO43− ions. J. Mol. Liq. 2022, 350, 118601. [Google Scholar] [CrossRef]
- Glasneck, F.; Roode-Gutzmer, Q.I.; Stumpf, T.; Kersting, B. Tetra-Substituted p-Tert-Butylcalix[4]Arene with Phosphoryl and Salicylamide Functional Groups: Synthesis, Complexation and Selective Extraction of f-Element Cations. Chem. Eur. J. 2022, 28, e202104301. [Google Scholar] [CrossRef]
- Fateh, F.; Yildirim, A.; Bhatti, A.A.; Yilmaz, M. A New Benzothiazin-functionalized Calix[4]arene-based Fluorescent Chemosensor for the Selective Detection of Co2+ Ion. J. Fluoresc. 2021, 31, 1075–1083. [Google Scholar] [CrossRef]
- Maity, D.; Gupta, R.; Gunupuru, R.; Srivastava, D.N.; Paul, P. Calix[4]arene functionalized gold nanoparticles: Application in colorimetric and electrochemical sensing of cobalt ion in organic and aqueous medium. Sens. Actuators B. 2014, 191, 757–764. [Google Scholar] [CrossRef]
- Mummidivarapu, V.S.; Hinge, V.K.; Tabbasum, K.; Gonnade, R.G.; Rao, C.P. Triazole-linked anthracenyl-appended calix [4] arene conjugate as receptor for Co (II): Synthesis, spectroscopy, microscopy, and computational studies. J. Org. Chem. 2013, 78, 3570–3576. [Google Scholar] [CrossRef]
Ag+ | Ni2+ | Co2+ | Zn2+ | Cu2+ | CN− | F− | ||
---|---|---|---|---|---|---|---|---|
(I) | Log (Ka) | - | 5.65 | 6.49 | - | - | 3.89 | 3.57 |
Log (β) | 13.13 | - | - | 10.87 | 11.11 | - | - | |
LOD (mg/L) | 0.60 | 0.73 | 0.68 | 4.25 | 0.76 | 1.45 | 2.09 |
Ni2+ | Co2+ | Cu2+ | ||
---|---|---|---|---|
(IV) | Log (β) | 11.06 | 11.25 | 11.11 |
LOD (µg/L) | 3.78 | 2.94 | 5.35 | |
(V) | Log (β) | 10.95 | 11.26 | 14.08 |
LOD (µg/L) | 10.89 | 6.57 | 10.89 |
Receptor | Method and Medium | LOD (µM) | Ref. |
---|---|---|---|
Calix[4]arene functionalized gold nanoparticles | Electrochemical—THF/H2O | 0.001 | [69] |
Anthracenyl-appended calix[4]arene- 1,3-diconjugate | Fluorescence—Ethanol/CHCl3 | 0.920 | [70] |
Benzothiazin-functionalized Calix[4]arene | Fluorescence—DMSO | 0.046 | [68] |
(I) | UV-Visible—CH3CN | 12.035 | - |
(IV) | Fluorescence—CH3CN | 0.050 | - |
(V) | Fluorescence—CH3CN | 0.110 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa, A.; Hernández-Arancibia, B.; Herrera-Muñoz, J.; Gómez-Machuca, H.; Saitz, C. Thiosemicarbazone- and Thiourea-Functionalized Calix[4]arenes in cone and 1,3-alternate Conformations: Receptors for the Recognition of Ions. Chemosensors 2025, 13, 48. https://doi.org/10.3390/chemosensors13020048
Ochoa A, Hernández-Arancibia B, Herrera-Muñoz J, Gómez-Machuca H, Saitz C. Thiosemicarbazone- and Thiourea-Functionalized Calix[4]arenes in cone and 1,3-alternate Conformations: Receptors for the Recognition of Ions. Chemosensors. 2025; 13(2):48. https://doi.org/10.3390/chemosensors13020048
Chicago/Turabian StyleOchoa, Andrés, Belén Hernández-Arancibia, José Herrera-Muñoz, Horacio Gómez-Machuca, and Claudio Saitz. 2025. "Thiosemicarbazone- and Thiourea-Functionalized Calix[4]arenes in cone and 1,3-alternate Conformations: Receptors for the Recognition of Ions" Chemosensors 13, no. 2: 48. https://doi.org/10.3390/chemosensors13020048
APA StyleOchoa, A., Hernández-Arancibia, B., Herrera-Muñoz, J., Gómez-Machuca, H., & Saitz, C. (2025). Thiosemicarbazone- and Thiourea-Functionalized Calix[4]arenes in cone and 1,3-alternate Conformations: Receptors for the Recognition of Ions. Chemosensors, 13(2), 48. https://doi.org/10.3390/chemosensors13020048