Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Silver Nanoparticles (AgNPs) Preparation
2.3. Image Acquisition and Paper-Based Analytical Device (PAD) Preparation
2.4. Quantification of the Digital Image
2.5. Construction of the Smartphone Application
3. Results and Discussion
3.1. Silver Nanoparticles as a Colorimetric Agent
3.2. Improving the Sensitivity and Portability of Digital Image-Based Colorimetry
3.3. Recovery Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castilhos, Z.C.; Rodrigues-Filho, S.; Rodrigues, A.P.C.; Villas-Bôas, R.C.; Siegel, S.; Veiga, M.M.; Beinhoff, C. Mercury contamination in fish from gold mining areas in Indonesia and human health risk assessment. Sci. Total Environ. 2006, 368, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Tomiyasu, T.; Kono, Y.; Kodamatani, H.; Hidayati, N.; Rahajoe, J.S. The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia. Environ. Res. 2013, 125, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, T.W.; Magos, L.; Myers, G.J. The Toxicology of Mercury—Current Exposures and Clinical Manifestations. N. Engl. J. Med. 2003, 349, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Khaydarov, R.R.; Khaydarov, R.A.; Gapurova, O.; Garipov, I.; Firdaus, M.L. Silver Nanoparticles as a Biocide for Water Treatment Applications. In Advanced Research in Nanosciences for Water Technology; Springer: Berlin, Germany, 2019; pp. 407–419. [Google Scholar]
- El-Safty, S.A.; Shenashen, M.A.; El-Safty, S.A. Mercury-ion optical sensors. TrAC—Trends Anal. Chem. 2012, 38, 98–115. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, Y.; Lee, K. Methylmercury Exposure and Health Effects. J. Prev. Med. Public Health 2012, 45, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Firdaus, M.L.; Alwi, W.; Trinoveldi, F.; Rahayu, I.; Rahmidar, L.; Warsito, K. Determination of Chromium and Iron Using Digital Image-based Colorimetry. Procedia Environ. Sci. 2014, 20, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Masawat, P.; Harfield, A.; Srihirun, N.; Namwong, A. Green Determination of Total Iron in Water by Digital Image Colorimetry. Anal. Lett. 2017, 50, 173–185. [Google Scholar] [CrossRef]
- Puchum, S.; Meelapsom, R.; Muniandy, S.S. Use of unmodified silver nanoparticles (AgNPs) as colorimetric Hg (II) sensor: A new approach to sensitive and high sample throughput determination of Hg (II) under high influence of ionic suppression. Int. J. Environ. Anal. Chem. 2019, 99, 1–18. [Google Scholar] [CrossRef]
- Salcedo, A.R.M.; Sevilla, F.B. Colorimetric determination of mercury vapor using smartphone camera-based imaging. Instrum. Sci. Technol. 2018, 46, 450–462. [Google Scholar] [CrossRef]
- Choodum, A.; Boonsamran, P.; Nicdaeid, N.; Wongniramaikul, W. On-site semi-quantitative analysis for ammonium nitrate detection using digital image colourimetry. Sci. Justice 2015, 55, 437–445. [Google Scholar] [CrossRef] [PubMed]
- David, T.; Grandivoriana, N.A.; Fidelis, N. Digital-Based Image Detection System in Simple Silver Nanoparticles-based Cyanide Assays. Res. J. Chem. Environ. 2018, 22, 10–14. [Google Scholar]
- Choodum, A.; Parabun, K.; Klawach, N.; Daeid, N.N.; Kanatharana, P.; Wongniramaikul, W. Real time quantitative colourimetric test for methamphetamine detection using digital and mobile phone technology. Forensic Sci. Int. 2014, 235, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Wongniramaikul, W.; Limsakul, W.; Choodum, A. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry. Food Chem. 2018, 249, 154–161. [Google Scholar] [CrossRef]
- Tambaru, D.; Rupilu, R.H.; Nitti, F.; Gauru, I.; Suwari. Development of Paper-Based Sensor Coupled with Smartphone Detector for Simple Creatinine Determination. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2017; p. 0200951. [Google Scholar]
- Priye, A.; Ball, C.S.; Meagher, R.J. Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor. Anal. Chem. 2018, 90, 12385–12389. [Google Scholar] [CrossRef]
- Fatoni, A.; Numnuam, A.; Kanatharana, P.; Limbut, W.; Thammakhet, C.; Thavarungkul, P. A highly stable oxygen-independent glucose biosensor based on a chitosan-albumin cryogel incorporated with carbon nanotubes and ferrocene. Sens. Actuators B Chem. 2013, 185, 725–734. [Google Scholar] [CrossRef]
- Shen, L.; Hagen, J.A.; Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab Chi 2012, 12, 4240–4243. [Google Scholar] [CrossRef]
- Priye, A.; Bird, S.W.; Light, Y.K.; Ball, C.S.; Negrete, O.A.; Meagher, R.J. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci. Rep. 2017, 7, 44778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firdaus, M.L.; Puspita, M.; Alwi, W.; Ghufira; Nurhamidah; Elvia, R. Dyes Removal Using Activated Carbon from Palm Oil Waste with Digital Image Colorimetry Quantification. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2017; p. 0200661. [Google Scholar]
- Chansuvarn, W.; Tuntulani, T.; Imyim, A. Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. TrAC—Trends Anal. Chem. 2015, 65, 83–96. [Google Scholar] [CrossRef]
- Firdaus, M.; Andriana, S.; Alwi, W.; Swistoro, E.; Ruyani, A.; Sundaryono, A. Green synthesis of silver nanoparticles using Carica Papaya fruit extract under sunlight irradiation and their colorimetric detection of mercury ions. J. Phys. Conf. Ser. 2017, 817, 012029. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wang, Y.; Huang, X.; Li, Y.; Zhang, H.; Zhong, X. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Analyst 2012, 137, 924–931. [Google Scholar] [CrossRef]
- Maity, D.; Kumar, A.; Gunupuru, R.; Paul, P. Colloids and Surfaces A: Physicochemical and Engineering Aspects Colorimetric detection of mercury (II) in aqueous media with high selectivity using calixarene functionalized gold nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2014, 455, 122–128. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Fitriani, I.; Wyantuti, S.; Hartati, Y.W.; Khaydarov, R.; McAlister, J.A.; Obata, H.; Gamo, T. Colorimetric Detection of Mercury (II) Ion in Aqueous Solution Using Silver Nanoparticles. Anal. Sci. 2017, 33, 831–837. [Google Scholar] [CrossRef]
- Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 172–176. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Krisnanto, N.; Alwi, W.; Muhammad, R.; Allan, M. Adsorption of Textile Dye by Activated Carbon Made from Rice Straw and Oil Palm Midrib. Aceh Int. J. Sci. Technol. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Susanti, E.; Ghufira; Alwi, W.; Swistoro, E. Isotherm, kinetics and thermodynamics of synthetic dyes adsorption onto activated charcoal made from oil palm midrib. Rasayan J. Chem. 2018, 11, 1532–1536. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Juwita, M.; Ibrahim, P.R.; Rakhmawaty, E.D.; Iman, R. Biosynthesis of Silver Nanoparticles using Jicama Extract and Its Application for Colorimetric Sensing of Mercury Ions. Res. J. Chem. Environ. 2018, 22, 1–3. [Google Scholar]
- Gray, J.E.; Theodorakos, P.M.; Fey, D.L.; Krabbenhoft, D.P. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ. Geochem. Health 2014, 37, 35–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Jiang, L.; Shao, Q.; Liu, X.; Marks, R.S.; Ma, J.; Chen, X. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 2013, 9, 1467–1481. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Q.; Nam, C.; Hickner, M.; Mahoney, M.; Meyerhoff, M.E. Ionophore-based anion-selective optode printed on cellulose paper. Angew. Chem. Int. Ed. 2017, 56, 11826–11830. [Google Scholar] [CrossRef] [PubMed]
- Tenda, K.; van Gerven, B.; Arts, R.; Hiruta, Y.; Merkx, M.; Citterio, D. Paper-Based Antibody Detection Devices Using Bioluminescent BRET-Switching Sensor Proteins. Angew. Chem. 2018, 130, 15595–15599. [Google Scholar] [CrossRef]
Hg(II) Concentration (ppb) | Color Value | Color Intensity | ||||
---|---|---|---|---|---|---|
R | G | B | R | G | B | |
0 | 132 | 127 | 38.1 | 0 | 0 | 0 |
1 | 133 | 129 | 38.9 | 2.87 | 5.24 | 10.3 |
2 | 133 | 130 | 39.6 | 3.15 | 8.23 | 17.2 |
3 | 134 | 132 | 40.3 | 6.39 | 17.0 | 24.7 |
4 | 134 | 132 | 40.9 | 5.23 | 14.9 | 31.7 |
Added Hg(II) (ppb) | Digital Image-Based Colorimetry | ICP-OES (ppb) | |
---|---|---|---|
Found (ppb) | Recovery (%) | ||
0 | 81.7 ± 2.5 | - | 83.2 |
40 | 123 ± 3 | 101 | 126 |
80 | 160 ± 4 | 98.9 | 161 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firdaus, M.L.; Aprian, A.; Meileza, N.; Hitsmi, M.; Elvia, R.; Rahmidar, L.; Khaydarov, R. Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors 2019, 7, 25. https://doi.org/10.3390/chemosensors7020025
Firdaus ML, Aprian A, Meileza N, Hitsmi M, Elvia R, Rahmidar L, Khaydarov R. Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors. 2019; 7(2):25. https://doi.org/10.3390/chemosensors7020025
Chicago/Turabian StyleFirdaus, M. Lutfi, Angga Aprian, Nessi Meileza, Marti Hitsmi, Rina Elvia, Lena Rahmidar, and Renat Khaydarov. 2019. "Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing" Chemosensors 7, no. 2: 25. https://doi.org/10.3390/chemosensors7020025
APA StyleFirdaus, M. L., Aprian, A., Meileza, N., Hitsmi, M., Elvia, R., Rahmidar, L., & Khaydarov, R. (2019). Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors, 7(2), 25. https://doi.org/10.3390/chemosensors7020025