On-Line Gaseous Formaldehyde Detection Based on a Closed-Microfluidic-Circuit Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Setups and Experimental Conditions
2.2.1. Overall Device Configuration
2.2.2. Prototype of the Reagent Vial
2.2.3. Integration in the Formaldehyde Microanalyser Prototype
3. Results
3.1. Signal Behavior as Function of Formaldehyde Microanalyser
3.2. Influence of the Gaseous Formaldehyde Concentration on the Signal Slope
3.3. Influence of the Reagent Volume on the Signal Slope
3.4. Fluorescence Signal Saturation and the Resulting Autonomy
3.5. Analytical Performances
3.6. Influence of Reagent Volume on the Temporal Resolution
4. Discussion
4.1. Influence of the Gaseous Formaldehyde Concentration
4.2. Influence of the Reagent Volume
4.3. Fluorescence Signal Saturation and the Resuling Autonomy
4.4. Analytical Performances and Comparison with Literature
4.5. Influence of Reagent Volume on the Temporal Resolution
4.6. Comparison with Literature
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dehghani, M.H.; Zarei, A.; Farhang, M.; Kumar, P.; Yousefi, M.; Kim, K.-H. Levels of formaldehyde in residential indoor air of Gonabad, Iran. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 483–494. [Google Scholar] [CrossRef]
- Babeş, B.; Martonoş, I.M.; Matei, A.T. Ventilation and Indoor Air Quality in Learning Environments from Cluj-Napoca (Romania). In Proceedings of the Air and Water Components of the Environment Conference, Cluj-Napoca, Romania, 22–24 March 2019; pp. 23–36. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 2020, 30, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Orola, B.A. Seasonal variations in indoor air quality parameters and occupants self-reported physical health within a warm humid climatic environment. Sustain. Build. 2020, 5, 2. [Google Scholar] [CrossRef]
- Yuan, Y.; Alahmad, B.; Kang, C.-M.; Al-Marri, F.; Kommula, V.; Bouhamra, W.; Koutrakis, P. Dust Events and Indoor Air Quality in Residential Homes in Kuwait. Int. J. Environ. Res. Public Health 2020, 17, 2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Lee, S.C.; Ho, K.F. Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China. Atmos. Environ. 2007, 13, 2851–2861. [Google Scholar] [CrossRef]
- Salthammer, T. Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. Build. Environ. 2019, 150, 219–232. [Google Scholar] [CrossRef]
- Gilbert, N.L.; Guay, M.; Gauvin, D.; Dietz, R.N.; Chan, C.C.; Lévesque, B. Air change rate and concentration of formaldehyde in residential indoor air. Atmos. Environ. 2008, 10, 2424–2428. [Google Scholar] [CrossRef]
- Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the Indoor Environment. Chem. Rev. 2010, 110, 2536–2572. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Wang, S. Ambient formaldehyde and its contributing factor to ozone and OH radical in a rural area. Atmos. Environ. 2010, 44, 2074–2078. [Google Scholar]
- Liu, C.; Miao, X.; Li, J. Outdoor formaldehyde matters and substantially impacts indoor formaldehyde concentrations. Build. Environ. 2019, 158, 145–150. [Google Scholar] [CrossRef]
- Marchand, C.; Bulliot, B.; Le Calvé, S.; Mirabel, P. Aldehyde measurements in indoor environments in Strasbourg (France). Atmos. Environ. 2006, 40, 1336–1345. [Google Scholar] [CrossRef]
- Trocquet, C.; Bernhardt, P.; Guglielmino, M.; Malandain, I.; Liaud, C.; Englaro, S.; Le Calvé, S. Near Real-Time Monitoring of Formaldehyde in a Low-Energy School Building. Atmosphere 2019, 10, 763. [Google Scholar] [CrossRef] [Green Version]
- Brdarić, D.; Kovač-Andrić, E.; Šapina, M.; Kramarić, K.; Lutz, N.; Perković, T.; Egorov, A. Indoor air pollution with benzene, formaldehyde, and nitrogen dioxide in schools in Osijek, Croatia. Air Qual. Atmos. Health 2019, 12, 963–968. [Google Scholar] [CrossRef]
- Casset, A.; Marchand, C.; Purohit, A.; Calve, S.L.; Uring-Lambert, B.; Donnay, C.; Meyer, P.; Blay, F.D. Inhaled formaldehyde exposure: Effect on bronchial response to mite allergen in sensitized asthma patients. Allergy 2006, 61, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, B.; Cheng, M.; Yang, M.; Gan, S.; Fan, L.; Wang, D.; Chen, W. Association between indoor formaldehyde exposure and asthma: A systematic review and meta-analysis of observational studies. Indoor Air 2020, 30, 682–690. [Google Scholar] [CrossRef]
- McGwin, G., Jr.; Lienert, J.; Kennedy, J.I., Jr. Formaldehyde Exposure and Asthma in Children: A Systematic Review. Environ. Health Perspect. 2010, 118, 313–317. [Google Scholar] [CrossRef] [Green Version]
- IARC Overall evalutation of carcinogenicity to humans, formaldehyde. Oncol. Times 2004, 26, 72. [CrossRef]
- ANSES—Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail. Valeurs Guides de Qualité d’Air Intérieur (VGAI) Le Formaldéhyde. Available online: https://www.anses.fr/fr/system/files/AIR2017SA0041Ra.pdf (accessed on 22 November 2019).
- Williams, J.; Li, H.; Ross, A.B.; Hargreaves, S.P. Quantification of the influence of NO2, NO and CO gases on the determination of formaldehyde and acetaldehyde using the DNPH method as applied to polluted environments. Atmos. Environ. 2019, 218, 117019. [Google Scholar] [CrossRef]
- Herrington, J.S.; Hays, M.D. Concerns regarding 24-h sampling for formaldehyde, acetaldehyde, and acrolein using 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents. Atmos. Environ. 2012, 55, 179–184. [Google Scholar] [CrossRef]
- Hornshøj, B.H.; Kobbelgaard, S.; Blakemore, W.R.; Stapelfeldt, H.; Bixler, H.J.; Klinger, M. Quantification of free formaldehyde in carrageenan and processed Eucheuma seaweed using high-performance liquid chromatography. Food Addit. Contam. Part A 2015, 32, 152–160. [Google Scholar] [CrossRef]
- de Freitas Rezende, F.B.; de Souza Santos Cheibub, A.M.; Pereira Netto, A.D.; Marques, F.F.D.C. Determination of formaldehyde in bovine milk using a high sensitivity HPLC-UV method. Microchem. J. 2017, 134, 383–389. [Google Scholar] [CrossRef]
- Rosenberger, W.; Beckmann, B.; Wrbitzky, R. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones. J. Chromatogr. B 2016, 1019, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Soman, A.; Qiu, Y.; Chan Li, Q. HPLC-UV Method Development and Validation for the Determination of Low Level Formaldehyde in a Drug Substance. J. Chromatogr. Sci. 2008, 46, 461–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salthammer, T. Photophysical properties of 3,5-diacetyl-1,4-dihydrolutidine in solution: Application to the analysis of formaldehyde. J. Photochem. Photobiol. A Chem. 1993, 74, 195–201. [Google Scholar] [CrossRef]
- Jobson, B.T.; McCoskey, J.K. Sample drying to improve HCHO measurements by PTR-MS instruments: Laboratory and field measurements. Atmos. Chem. Phys. 2010, 10, 1821–1835. [Google Scholar] [CrossRef] [Green Version]
- Hanoune, B.; LeBris, T.; Allou, L.; Marchand, C.; Le Calvé, S. Formaldehyde measurements in libraries: Comparison between infrared diode laser spectroscopy and a DNPH-derivatization method. Atmos. Environ. 2006, 40, 5768–5775. [Google Scholar] [CrossRef]
- Vlasenko, A.; Macdonald, A.M.; Sjostedt, S.J.; Abbatt, J.P.D. Formaldehyde measurements by Proton transfer reaction–Mass Spectrometry (PTR-MS): Correction for humidity effects. Atmos. Meas. Tech. 2010, 3, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Toda, K.; Tokunaga, W.; Gushiken, Y.; Hirota, K.; Nose, T.; Suda, D.; Nagai, J.; Ohira, S.-I. Mobile monitoring along a street canyon and stationary forest air monitoring of formaldehyde by means of a micro-gas analysis system. J. Environ. Monit. 2012, 14, 1462–1472. [Google Scholar] [CrossRef] [Green Version]
- Allouch, A.; Guglielmino, M.; Bernhardt, P.; Serra, C.A.; Le Calvé, S. Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection. Sens. Actuators B Chem. 2013, 181, 551–558. [Google Scholar] [CrossRef]
- Pretto, A.; Milani, M.R.; Cardoso, A.A. Colorimetric determination of formaldehyde in air using a hanging drop of chromotropic acid. J. Environ. Monit. 2000, 2, 566–570. [Google Scholar] [CrossRef]
- Toda, K.; Yoshioka, K.-I.; Mori, K.; Hirata, S. Portable system for near-real time measurement of gaseous formaldehyde by means of parallel scrubber stopped-flow absorptiometry. Anal. Chim. Acta 2005, 531, 41–49. [Google Scholar] [CrossRef]
- Sassine, M.; Picquet-Varrault, B.; Perraudin, E.; Chiappini, L.; Doussin, J.F.; George, C. A new device for formaldehyde and total aldehydes real-time monitoring. Environ. Sci. Pollut. Res. Int. 2014, 21, 1258–1269. [Google Scholar] [CrossRef] [PubMed]
- Guglielmino, M.; Bernhardt, P.; Trocquet, C.; Serra, C.A.; Le Calvé, S. On-line gaseous formaldehyde detection by a microfluidic analytical method based on simultaneous uptake and derivatization in a temperature controlled annular flow. Talanta 2017, 172, 102–108. [Google Scholar] [CrossRef]
- Sakai, T.; Tanaka, S.; Teshima, N.; Yasuda, S.; Ura, N. Fluorimetric flow injection analysis of trace amount of formaldehyde in environmental atmosphere with 5,5-dimethylcyclohexane-1,3-dione. Talanta 2002, 58, 1271–1278. [Google Scholar] [CrossRef]
- Li, J.; Dasgupta, P.K.; Luke, W. Measurement of gaseous and aqueous trace formaldehyde: Revisiting the pentanedione reaction and field applications. Anal. Chim. Acta 2005, 531, 51–68. [Google Scholar] [CrossRef]
- Zheng, W. Développement d’un Analyseur Rapide et Transportable du Formaldéhyde dans L’air. Ph.D. Thesis, University of Strasbourg, Strasbourg, France, 2010. [Google Scholar]
- Guglielmino, M.; Allouch, A.; Serra, C.A.; Calvé, S.L. Development of microfluidic analytical method for on-line gaseous Formaldehyde detection. Sens. Actuators B Chem. 2017, 243, 963–970. [Google Scholar] [CrossRef]
- Becker, A.; Andrikopoulou, C.; Bernhardt, P.; Ocampo-Torres, R.; Troquet, C.; Le Calvé, S. Development and Optimization of an Airborne Formaldehyde Microfluidic Analytical Device Based on Passive Uptake through a Microporous Tube. Micromachines 2019, 10, 807. [Google Scholar] [CrossRef] [Green Version]
- Hak, C.; Pundt, I.; Trick, S.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A.S.H.; Junkermann, W.; Astorga-Lloréns, C.; et al. Intercomparison of four different In-Situ techniques for ambient formaldehyde measurements in urban air. Atmos. Chem. Phys. 2005, 5, 2881–2900. [Google Scholar] [CrossRef] [Green Version]
- Eisner, U.; Kuthan, J. Chemistry of dihydropyridines. Chem. Rev. 1972, 72, 1–42. [Google Scholar] [CrossRef]
- Cerón, R.M.; Cerón, J.G.; Muriel, M. Diurnal and seasonal trends in carbonyl levels in a semi-urban coastal site in the Gulf of Campeche, Mexico. Atmos. Environ. 2007, 41, 63–71. [Google Scholar] [CrossRef]
- Wangchuk, T.; He, C.; Dudzinska, M.R.; Morawska, L. Seasonal variations of outdoor air pollution and factors driving them in the school environment in rural Bhutan. Atmos. Environ. 2015, 113, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Le Calvé, S.; Andrikopoulou, C.; Becker, A.; Bernhardt, P.; Trocquet, C. Procédé et Dispositif d’Analyse Microfluidique Pour la Quantification de Polluants Gazeux Solubles dans L’eau. French Patent n1906855, 25 June 2019. [Google Scholar]
- Allou, L.; Maimouni, L. Henry’s law constant measurements for formaldehyde and benzaldehyde as a function of temperature and water composition. Atmos. Environ. 2011, 45, 2991–2998. [Google Scholar] [CrossRef]
- Kirchner, S.; Dassonville, C.; Mandin, C.; Sivanantham, S.; Wei, W.; Malingre, L.; Grégoire, A.; Ramalho, O.; Ribéron, J.; Derbez, M.; et al. Qualité de l’air et Confort dans les écoles en France: Premiers Résultats de la Campagne Nationale. Available online: https://www.cstb.fr/fr/actualites/detail/premiers-resultats-qualite-air-confort-ecoles-france-0618/ (accessed on 26 June 2018).
- Monitoring Indoor Air Quality in French Schools and Day-Care Centres. Results from the First Phase of a Pilot Survey. Available online: https://www.researchgate.net/publication/311846852_Monitoring_indoor_air_quality_in_French_schools_and_day-care_centres_Results_from_the_first_phase_of_a_pilot_survey (accessed on 26 June 2020).
- Mariuta, D.; Govindaraji, A.; Colin, S.; Barrot, C.; Le Calvé, S.; Korvink, J.G.; Baldas, L.; Brandner, J.J. Optofluidic Formaldehyde Sensing: Towards On-Chip Integration. Micromachines 2020, 11, 673. [Google Scholar] [CrossRef]
Detection Mode | Reagent | Liquid Flow Rate (µL min−1) | Trapping Mode | Weight (kg) | LOD (µg m−3) | Temporal Resolution (min) | Reference |
---|---|---|---|---|---|---|---|
Colorimetry | Chromotropic acid | Droplet of 15 µL | Sampling chamber | N/A a | 2.5 | 7 | [32] |
Fluorescence | Dimedone | 500–1300 | Two-channel flow | N/A a | 1.1 | N/A | [36] |
Aerolaser AL4021 | Acetylacetone | 500 | N/A | 20 b | 0.19 | 1.5 | [41] |
Fluorescence | Acetylacetone | 500–1300 | Two-channel flow | 17.4 c | 0.09 | N/A | [37] |
Fluorescence | Acetylacetone | 1200 | Diffusion scrubber | 8 c | 0.5 | 6–10 | [38] |
Spectrophotometry | MBTH hydrochloride | Stopped-flow | Gas diffusion scrubbers | 8.5 c | 0.1 | 5 | [33] |
Fluorescence | Pentanedione | 100–150 | Microchannel scrubber | N/A a | 0.12 | 0.83 s | [30] |
Colorimetry | MBTH hydrochloride | 1000 | Glass stripping coil | N/A a | 0.005 | 15 | [34] |
Fluorescence | Acetylacetone | 5–35 | Microfluidic annular flow | 5 c | 1.8 | 1–2 | [39] |
Colorimetry | Acetylacetone | 5–35 | Microfluidic annular flow | 5 c | 0.7 | 1–2 | [35] |
Fluorescence | Acetylacetone | 17 | Microfluidic annular flow | 4 c,d | ≤1.0 | 0.03–2 | [13] |
Fluorescence | Acetylacetone | 17 | Passive diffusion | 4 c | 0.13–0.4 | 3.5 | [40] |
Fluorescence in recirculation mode | Acetylacetone | 17 | Passive diffusion | <3 e | 2–0.08 | 60–1440 | This work |
Series of Experiments | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Parameters | |||||
Detection module | µ-F1, In’Air Solutions | µ-F1, In’Air Solutions | Laboratory Prototype | µ-F1 In’Air Solutions | |
Liquid flow rate (µL min−1) | 17 | ||||
Gas flow rate (mL min−1) | 250 | ||||
Formaldehyde concentration (µg m−3) | 54 or 278 | 16–278 | 35–278 | 278 | |
Reagent volume (mL) | 5.85 | 5.87 | 5.88 or 11.54 | 5.79 | |
Microporous tube length (cm) | 10.0 ± 0.2 | ||||
PMT Gain (%) | 50 | 50 | 48 | 50 |
Formaldehyde Concentration | Reagent Volume | Slope a | Slope × Volume | S0 at t0 b | Sf at tf c | Time Required for Saturation (Δt) | |
---|---|---|---|---|---|---|---|
(µg m−3) | (mL) | (µV s−1) | (µV mL s−1) | (µV) | (µV) | (hours) | (days) |
0 | 0 | 0.0 | 0.0 | 1.0 × 105 | 2.1 × 106 | 0.0 | 0.0 |
16 | 5.93 | 3.39 ± 0.71 | 20.1 | 1.0 × 105 | 2.1 × 106 | 165.8 | 6.9 |
54 | 5.86 | 6.10 ± 0.92 | 35.6 | 1.0 × 105 | 2.1 × 106 | 92.5 | 3.9 |
128 | 6.00 | 16.7 ± 0.54 | 100.1 | 1.0 × 105 | 2.1 × 106 | 33.7 | 1.4 |
201 | 5.78 | 31.0 ± 2.07 | 179.3 | 1.0 × 105 | 2.1 × 106 | 18.1 | 0.8 |
278 | 5.79 | 36.3 ± 2.53 | 210.4 | 1.0 × 105 | 2.1 × 106 | 15.5 | 0.6 |
Formaldehyde Concentration | Reagent Volume | Slope a | SNoise | SLOD | tLOD | SLOQ | tLOQ |
---|---|---|---|---|---|---|---|
(µg m−3) | (mL) | (µV s−1) | (µV) | (S/N = 3) | (min) | (S/N = 10) | (min) |
0 | 0 | 0.0 | 500 | 1500 | 0.00 | 5000 | 0.00 |
16 | 5.93 | 3.39 ± 0.71 | 500 | 1500 | 7.37 | 5000 | 24.58 |
54 | 5.86 | 6.10 ± 0.92 | 500 | 1500 | 4.11 | 5000 | 13.71 |
128 | 6.00 | 16.7 ± 0.54 | 500 | 1500 | 1.50 | 5000 | 5.00 |
201 | 5.78 | 31.0 ± 2.07 | 500 | 1500 | 0.81 | 5000 | 2.69 |
278 | 5.79 | 36.3 | 500 | 1500 | 0.69 | 5000 | 2.29 |
Parameters | Trocquet et al. (2019) [13] | Becker et al. (2019) [40] | This Work |
---|---|---|---|
Technical Details and Cost | |||
Size (length × width × height) (cm) | 32 × 28.5 × 13 | 32 × 28.5 × 13 | 24 × 13 × 13 |
Weight (kg) | 6 a | 4 b | <3 b |
Battery autonomy (h) | 4 c | >6 d | >6 d |
Reagent volume (mL) | 100 | 100 | ~6 e |
Reagent autonomy (day) | 4.1 | 4.1 | >4 f |
Waste bottle | yes | Yes | no |
Cost (k€) | ~30 g | <10 h | <10 h |
Analytical Principle and Performances | |||
Derivative reagent | Acetylacetone | Acetylacetone | Acetylacetone |
Trapping mode | Microfluidic annular flow | Passive diffusion | Passive diffusion |
Circulation mode | Classic | Classic | Recirculation |
Detection | Fluorescence | Fluorescence | Fluorescence |
LOD (µg m−3) | ≤1.0 | 0.13–0.4 i | 0.08–2 j |
Time resolution (min) | 0.03–2 k | 3.5 | 60–1440 l |
Determination of HCHO concentration | Intensity m | Intensity m | Slope n |
Blank necessity | yes | Yes | no |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, A.; Andrikopoulou, C.; Bernhardt, P.; Trocquet, C.; Le Calvé, S. On-Line Gaseous Formaldehyde Detection Based on a Closed-Microfluidic-Circuit Analysis. Chemosensors 2020, 8, 57. https://doi.org/10.3390/chemosensors8030057
Becker A, Andrikopoulou C, Bernhardt P, Trocquet C, Le Calvé S. On-Line Gaseous Formaldehyde Detection Based on a Closed-Microfluidic-Circuit Analysis. Chemosensors. 2020; 8(3):57. https://doi.org/10.3390/chemosensors8030057
Chicago/Turabian StyleBecker, Anaïs, Christina Andrikopoulou, Pierre Bernhardt, Claire Trocquet, and Stéphane Le Calvé. 2020. "On-Line Gaseous Formaldehyde Detection Based on a Closed-Microfluidic-Circuit Analysis" Chemosensors 8, no. 3: 57. https://doi.org/10.3390/chemosensors8030057
APA StyleBecker, A., Andrikopoulou, C., Bernhardt, P., Trocquet, C., & Le Calvé, S. (2020). On-Line Gaseous Formaldehyde Detection Based on a Closed-Microfluidic-Circuit Analysis. Chemosensors, 8(3), 57. https://doi.org/10.3390/chemosensors8030057