Robust and Rapid Detection of Mixed Volatile Organic Compounds in Flow Through Air by a Low Cost Electronic Nose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Setup
2.2. Selection of Gas Sensors
2.2.1. Correlation Analysis
2.2.2. Principal Component Analysis
2.3. Experimental Sample Acquisition
3. Results
3.1. VOC Mixtures Identification
3.1.1. Feature Extraction
3.1.2. Qualitative Identification
3.2. Quantitative Identification of VOC Mixture
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- United States Environmental Protection Agency (EPA). Volatile Organic Compounds’ Impact on Indoor Air Quality. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality (accessed on 2 December 2019).
- Rusinek, R.; Siger, A.; Gawrysiak-Witulska, M.; Rokosik, E.; Malaga-Toboła, U.; Gancarz, M. Application of an electronic nose for determination of pre-pressing treatment of rapeseed based on the analysis of volatile compounds contained in pressed oil. Int. J. Food Sci. Technol. 2020, 55, 2161–2170. [Google Scholar] [CrossRef]
- Marek, G.; Dobrzański, B., Jr.; Oniszczuk, T.; Combrzyński, M.; Ćwikła, D.; Rusinek, R. Detection and Differentiation of Volatile Compound Profiles in Roasted Coffee Arabica Beans from Different Countries Using an Electronic Nose and GC-MS. Sensors 2020, 20, 2124. [Google Scholar] [CrossRef] [PubMed]
- Oakley-Girvan, I.; Davis, S.W. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review. Cancer Biomark. 2018, 21, 29–39. [Google Scholar] [CrossRef]
- Luo, H.; Jia, P.; Qiao, S.; Duan, S. Enhancing electronic nose performance based on a novel QPSO-RBM technique. Sens. Actuators B Chem. 2018, 259, 241–249. [Google Scholar] [CrossRef]
- Ezhilan, M.; Nesakumar, N.; Babu, K.a.; Srinandan, C.S.; Rayappan, J.B.B. A Multiple Approach Combined with Portable Electronic Nose for Assessment of Post-harvest Sapota Contamination by Foodborne Pathogens. Food Bioprocess Technol. 2020, 13, 1193–1205. [Google Scholar] [CrossRef]
- Wu, H.; Siegel, M. Odor-based incontinence sensor. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Baltimore, MD, USA, 1–4 May 2000; pp. 63–68. [Google Scholar]
- Łagód, G.; Duda, S.M.; Majerek, D.; Szutt, A.; Dołhańczuk-Śródka, A. Application of Electronic Nose for Evaluation of Wastewater Treatment Process Effects at Full-Scale WWTP. Processes 2019, 7, 251. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Rodríguez, A.; Camara, V.F.; Campo, F.; Becherán, L.; Durán, A.; Vieira, V.D.; de Melo, H.; Garcia-Ramirez, A.R. Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Res. 2018, 134, 92–100. [Google Scholar] [CrossRef]
- Weppner, W. Solid-state electrochemical gas sensors. Sens. Actuators A Phys. 1987, 12, 107–119. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Ishihara, T.; Matsubara, S. Capacitive Type Gas Sensors. J. Electroceram. 1998, 2, 215–228. [Google Scholar] [CrossRef]
- Miura, N.; Minamoto, H.; Sakai, G.; Yamazoe, N. New-type calorimetric gas sensor using temperature characteristics of piezoelectric quartz crystal fitted with noble metal catalyst film. Sens. Actuators B Chem. 1991, 5, 211–217. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.; Xu, J. QCM formaldehyde sensing materials: Design and sensing mechanism. Sens. Actuators B Chem. 2019, 293, 71–82. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Li, G.; Xu, H.; Gao, J.; Zhang, Q. Superhydrophobic n-octadecylsiloxane (PODS)-functionalized PDA-PEI film as efficient water-resistant sensor for ppb-level hexanal detection. Chem. Eng. J. 2020, 399, 125755. [Google Scholar] [CrossRef]
- Ricco, J.; Martin, S.J.; Zipperian, T.E. Surface acoustic wave gas sensor based on film conductivity changes. Sens. Actuators A Phys. 1985, 8, 319–333. [Google Scholar] [CrossRef]
- Töpfer, T.; Petrov, K.P.; Mine, Y.; Jundt, D.; Curl, R.F.; Tittel, F.K. Room-temperature mid-infrared laser sensor for trace gas detection. Appl. Opt. 1997, 36, 8042–8049. [Google Scholar] [CrossRef]
- Kladsomboon, S.; Lutz, M.; Pongfay, T.; Kerdcharoen, T. An optical artificial nose system for odor classifications based on LED arrays. In Proceedings of the 8th Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand—Conference 2011, Khon Kaen, Thailand, 17–19 May 2011; pp. 145–148. [Google Scholar]
- Thepudom, T.; Kladsomboon, S.; Pogfay, T.; Tuantranont, A.; Kerdcharoen, T. Portable optical-based electronic nose using dual-sensors array applied for volatile discrimination. In Proceedings of the 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology; Institute of Electrical and Electronics Engineers (IEEE), Phetchaburi, Thailand, 16–18 May 2012; pp. 1–4. [Google Scholar]
- Park, S.Y.; Kim, Y.; Kim, T.; Eom, T.H.; Kim, S.Y.; Jang, H.W. Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat 2019, 1, 289–316. [Google Scholar] [CrossRef] [Green Version]
- Figaro USA, Inc. Operating Principle-MOS Type. Available online: http://www.figarosensor.com/technicalinfo/principle/mos-type.html. (accessed on 3 December 2019).
- Xu, Y.; Zhao, X.; Chen, Y.; Zhao, W. Research on a Mixed Gas Recognition and Concentration Detection Algorithm Based on a Metal Oxide Semiconductor Olfactory System Sensor Array. Sensors 2018, 18, 3264. [Google Scholar] [CrossRef]
- Paknahad, M.; McIntosh, C.; Hoorfar, M. Selective detection of volatile organic compounds in microfluidic gas detectors based on “like dissolves like”. Sci. Rep. 2019, 9, 161. [Google Scholar] [CrossRef]
- Romain, A.; Nicolas, J. Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview. Sens. Actuators B Chem. 2010, 146, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Honeycutt, W.T.; Ley, M.T.; Materer, N.F. Precision and Limits of Detection for Selected Commercially Available, Low-Cost Carbon Dioxide and Methane Gas Sensors. Sensors 2019, 19, 3157. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Li, X.; Wang, J.; Yao, P.; Akbar, S.A. Detection of Formaldehyde in Mixed VOCs Gases Using Sensor Array with Neural Networks. IEEE Sensors J. 2016, 16, 1. [Google Scholar] [CrossRef]
- Introduction to Principal Components and FactorAnalysis. Available online: ftp://statgen.ncsu.edu/pub/thorne/molevoclass/AtchleyOct19.pdf (accessed on 1 January 2020).
- PK Safety. Search/Multi-gas. Available online: https://pksafety.com/search.php?search_query=multi-gas§ion=product. (accessed on 3 August 2020).
- Carmel, L.; Levy, S.; Lancet, D.; Harel, D. A feature extraction method for chemical sensors in electronic noses. Sens. Actuators B Chem. 2003, 93, 67–76. [Google Scholar] [CrossRef]
- Martinelli, E.; Falconi, C.; D’Amico, A.; Di Natale, C. Feature Extraction of chemical sensors in phase space. Sens. Actuators B Chem. 2003, 95, 132–139. [Google Scholar] [CrossRef]
- S Zhang, S.; Xie, C.; Hu, M.; Li, H.; Bai, Z.; Zeng, D. An entire feature extraction method of metal oxide gas sensors. Sens. Actuators B Chem. 2008, 132, 81–89. [Google Scholar] [CrossRef]
- Bali, R.; Sarkar, D. R Machine Learning by Example; Packt Publishing: Birmingham, UK, 2016. [Google Scholar]
- Chen, Z.; Zheng, Y.; Chen, K.; Li, H.; Jian, J. Concentration Estimator of Mixed VOC Gases Using Sensor Array with Neural Networks and Decision Tree Learning. IEEE Sens. J. 2017, 17, 1884–1892. [Google Scholar] [CrossRef]
Sensor | Price | Response | Work Condition | Electrical Characteristic |
---|---|---|---|---|
MQ 135 | $2.86 | Ammonia, nitrogen oxide, alcohols, aromatic compounds, sulfide and smoke. | VC, VH: 5 ± 0.1 V PH ≤ 800 mW | RS: 30–200 kΩ (100 ppm NH3) α ≤ 0.65 (200/50 NH3) |
MQ 136 | $18.7 | Hydrogen sulfide gas, organic vapor including sulfur. | VC, VH: 5 ± 0.1 V PH ≤ 800 mW | RS: 30–200 kΩ (10 ppm H2S) α ≤ 0.65 (20/5 H2S) |
TGS 2600 | $3.50 | Gaseous air contaminants, methane, carbon monoxide, isobutane, ethanol, hydrogen | VC, VH: 5 ± 0.2 V PH: 210 mW | RS: 10–90 kΩ (in air) β = 0.3–0.6 (10 ppm H2/air) |
TGS 2602 | $6.61 | VOCs, ammonia, hydrogen sulfide, toluene, ethanol, etc., air contaminants | VC, VH: 5 ± 0.2 V PH: 280 mW | RS: 10–100 kΩ (in air) β = 0.15–0.5 (10 ppm EtOH/air) |
TGS 2610 | $12 | Butane, LP gas, propane, methane, hydrogen, general hydrocarbons | VC, VH: 5 ± 0.2 V PH: 280 mW | RS: 1–10 kΩ (in 1800 ppm isobutane) β = 0.45–0.62 (3000 ppm/1000 ppm isobutane) |
TGS 2611 | $7.63 | Methane, natural gas, hydrogen | VC, VH: 5 ± 0.2 V PH = 280 ± 25 mW | RS: 0.68–6.8 kΩ (in 5000 ppm methane) β = 0.60 ± 0.06 (9000 ppm/3000 ppm methane) |
Sensor | MQ 135 | MQ 136 | TGS 2600 | TGS 2602 | TGS 2610 | TGS 2611 |
---|---|---|---|---|---|---|
MQ 135 | 1 | – | – | – | – | – |
MQ 136 | 0.9499 | 1 | – | – | – | – |
TGS 2600 | 0.8363 | 0.9067 | 1 | – | – | – |
TGS 2602 | 0.7794 | 0.8321 | 0.9702 | 1 | – | – |
TGS 2610 | 0.9174 | 0.9855 | 0.9325 | 0.8447 | 1 | – |
TGS 2611 | 0.9408 | 0.9692 | 0.7998 | 0.6987 | 0.9409 | 1 |
PC | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
MQ 135 | 0.0193 | 0.0563 | −0.1183 | 0.0855 | −0.1215 | 0.9800 |
MQ 136 | 0.2510 | 0.7081 | -0.4392 | −0.2516 | 0.4228 | −0.0243 |
TGS 2600 | 0.1441 | 0.0892 | 0.5017 | −0.5653 | 0.6273 | 0.0810 |
TGS 2602 | 0.9332 | −0.3415 | −0.0739 | −0.0302 | −0.0776 | −0.0147 |
TGS 2610 | 0.1997 | 0.5234 | 0.6608 | −0.2286 | −0.4441 | 0.0107 |
TGS 2611 | 0.0722 | 0.3113 | −0.3152 | 0.7461 | −0.4580 | −0.1792 |
EXP | 96.0152 | 3.8214 | 0.1293 | 0.0185 | 0.0116 | 0.0040 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wu, J. Robust and Rapid Detection of Mixed Volatile Organic Compounds in Flow Through Air by a Low Cost Electronic Nose. Chemosensors 2020, 8, 73. https://doi.org/10.3390/chemosensors8030073
Huang J, Wu J. Robust and Rapid Detection of Mixed Volatile Organic Compounds in Flow Through Air by a Low Cost Electronic Nose. Chemosensors. 2020; 8(3):73. https://doi.org/10.3390/chemosensors8030073
Chicago/Turabian StyleHuang, Jiamei, and Jayne Wu. 2020. "Robust and Rapid Detection of Mixed Volatile Organic Compounds in Flow Through Air by a Low Cost Electronic Nose" Chemosensors 8, no. 3: 73. https://doi.org/10.3390/chemosensors8030073
APA StyleHuang, J., & Wu, J. (2020). Robust and Rapid Detection of Mixed Volatile Organic Compounds in Flow Through Air by a Low Cost Electronic Nose. Chemosensors, 8(3), 73. https://doi.org/10.3390/chemosensors8030073