Voltammetric Determination of Phenylalanine Using Chemically Modified Screen-Printed Based Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
2.2. Electrodes
2.3. Reagents and Solutions
2.4. Methodology
3. Results and Discussions
3.1. Electrochemical Responses of SPEs in 10−1 M KCl Solution
3.2. Electrochemical Responses of SPCEs in 10−3 M K4[Fe(CN)6]–10−1 M KCl Solution
3.3. Electrochemical Responses of SPCEs Modified in 10−3 M Phe–10−1 M KCl Solution
- Γ—surface coverage, mol × cm−2;
- Ipa—the current of the peak, A;
- A—electrode surface, cm2;
- n—the number of electrons transferred during redox processes, 4 for peak pair I;
- F—Faraday’s constant, 96,485 C × mol−1;
- R—universal gas constant, 8.314 J × mol−1 × K−1;
- T—absolute temperature, K;
3.4. Influence of Phe Concentration on the Voltammetric Response of PB-SPCE
3.5. Reproducibility, Stability, and Interference Studies
3.6. Quantitative Determination of Phe in Pharmaceuticals Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- García-Carmona, L.; González, M.C.; Escarpa, A. Nanomaterial-based electrochemical (bio)-sensing: One step ahead in diagnostic and monitoring of metabolic rare diseases. TrAC Trends Anal. Chem. 2019, 118, 29–42. [Google Scholar] [CrossRef]
- Pavan, S.; Rommel, K.; Mateo Marquina, M.E.; Höhn, S.; Lanneau, V.; Rath, A. Clinical practice guidelines for rare diseases: The orphanet database. PLoS ONE 2017, 12, e0170365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumbo-Lucioni, P.P.; Garber, K.; Kiel, J.; Baric, I.; Berry, G.T.; Bosch, A.; Burlina, A.; Chiesa, A.; Pico, M.L.C.; Estrada, S.C. Diversity of approaches to classic galactosemia around the world: A comparison of diagnosis, intervention, and outcomes. J. Inherit. Metab. Dis. 2012, 35, 1037–1049. [Google Scholar] [CrossRef]
- Burrage, L.C.; Nagamani, S.C.; Campeau, P.M.; Lee, B.H. Branched-chain amino acid metabolism: From rare Mendelian diseases to more common disorders. Hum. Mol. Genet. 2014, 23, R1–R8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinu, A.; Apetrei, C. A Review on Electrochemical Sensors and Biosensors Used in Phenylalanine Electroanalysis. Sensors 2020, 20, 2496. [Google Scholar] [CrossRef] [PubMed]
- Blau, N.; Hennermann, J.B.; Langenbeck, U.; Lichter-Konecki, U. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol. Genet. Metab. 2011, 104, S2–S9. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, A.; Okano, Y.; Miyagi, T.; Isshiki, G.; Oura, T. Quantitative Beutler test for newborn mass screening of galactosemia using a fluorometric microplate reader. Clin. Chem. 2000, 46, 806–810. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Tajima, G.; Bahagia, A.D.; Sakamoto, A.; Ono, H.; Sakura, N.; Naito, K.; Hamakawa, M.; Yoshii, C.; Kubota, M. Differential diagnosis of neonatal mild hypergalactosaemia detected by mass screening: Clinical significance of portal vein imaging. J. Inherit. Metab. Dis. 2004, 27, 11–18. [Google Scholar] [CrossRef]
- Dick, L.; Dooley, N.; Elliott, M.A.; Ford, S.J.; Gordon, M.R.; Halbert, G.W.; Kerr, W.J. Boron phenylalanine and related impurities: HPLC analysis, stability profile and degradation pathways. J. Pharm. Biomed. Anal. 2011, 56, 633–636. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Liu, Y.; Yang, X.; Luo, L.; Yao, S. Preparation of L-phenylalanine imprinted polymer based on monodisperse hybrid silica microsphere and its application on chiral separation of phenylalanine racemates as HPLC stationary phase. Sep. Purif. Technol. 2012, 87, 142–148. [Google Scholar] [CrossRef]
- Mo, X.; Li, Y.; Tang, A.; Ren, Y. Simultaneous determination of phenylalanine and tyrosine in peripheral capillary blood by HPLC with ultraviolet detection. Clin. Biochem. 2013, 46, 1074–1078. [Google Scholar] [CrossRef] [PubMed]
- Neurauter, G.; Scholl-Bürgi, S.; Haara, A.; Geisler, S.; Mayersbach, P.; Schennach, H.; Fuchs, D. Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection. Clin. Biochem. 2013, 46, 1848–1851. [Google Scholar] [CrossRef]
- Pecce, R.; Scolamiero, E.; Ingenito, L.; Parenti, G.; Ruoppolo, M. Optimization of an HPLC method for phenylalanine and tyrosine quantization in dried blood spot. Clin. Biochem. 2013, 46, 1892–1895. [Google Scholar] [CrossRef] [PubMed]
- Ciolacu, F.L.; Ardelean, A.; Țurcuș, V.; Mândruțiu, I.; Belengeanu, A.; Bechet, D.; Frențescu, L. A simple, sensitive and highly accurate procedure for plasma phenylalanine determination by HPLC. Acta Endocrinol. Buc 2015, 11, 143–146. [Google Scholar]
- Peat, J.; Garg, U. Determination of phenylalanine and tyrosine by high performance liquid chromatography-tandem mass spectrometry. In Clinical Applications of Mass Spectrometry in Biomolecular Analysis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 219–225. [Google Scholar]
- Hroboňová, K.; Lomenova, A. Molecularly imprinted polymer as stationary phase for HPLC separation of phenylalanine enantiomers. Mon. Chem. Chem. Mon. 2018, 149, 939–946. [Google Scholar] [CrossRef]
- Lomenova, A.; Hroboňová, K. Comparison of HPLC separation of phenylalanine enantiomers on different types of chiral stationary phases. Food Anal. Methods 2018, 11, 3314–3323. [Google Scholar] [CrossRef]
- Kazan, R.M.; Seddik, H.A.; Marstani, Z.M.; Elsutohy, M.M.; Yasri, N.G. Determination of amino acids content in tea species using liquid chromatography via pre-column fluorescence derivatization. Microchem. J. 2019, 150, 104103. [Google Scholar] [CrossRef]
- Xu, X.; Ji, D.; Zhang, Y.; Gao, X.; Xu, P.; Li, X.; Liu, C.-C.; Wen, W. Detection of Phenylketonuria Markers Using a ZIF-67 Encapsulated PtPd Alloy Nanoparticle (PtPd@ ZIF-67)-Based Disposable Electrochemical Microsensor. ACS Appl. Mater. Interfaces 2019, 11, 20734–20742. [Google Scholar] [CrossRef]
- Harms, E.; Olgemöller, B. Neonatal screening for metabolic and endocrine disorders. Dtsch. Ärztebl. Int. 2011, 108, 11. [Google Scholar] [CrossRef]
- Rhode, H.; Elei, E.; Taube, I.; Podskarbi, T.; Horn, A. Newborn screening for galactosemia: Ultramicro assay for galactose-1-phosphate-uridyltransferase activity. Clin. Chim. Acta 1998, 274, 71–87. [Google Scholar] [CrossRef]
- Jeong, J.-S.; Yoon, H.-R.; Hong, S.-P. Development of a new diagnostic method for galactosemia by high-performance anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. A 2007, 1140, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Easley, C.J.; Jin, L.J.; Elgstoen, K.B.P.; Jellum, E.; Landers, J.P.; Ferrance, J.P. Capillary electrophoresis with laser-induced fluorescence detection for laboratory diagnosis of galactosemia. J. Chromatogr. A 2003, 1004, 29–37. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shadjou, N.; Chen, S.-T.; Sheikhzadeh, P. MCM-41-NH2 as an advanced nanocatalyst for electrooxidation and determination of amino acids. Catal. Commun. 2012, 19, 21–27. [Google Scholar] [CrossRef]
- Blau, N.; Shen, N.; Carducci, C. Molecular genetics and diagnosis of phenylketonuria: State of the art. Expert Rev. Mol. Diagn. 2014, 14, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Dincer, C.; Bruch, R.; Kling, A.; Dittrich, P.S.; Urban, G.A. Multiplexed point-of-care testing–xPOCT. Trends Biotechnol. 2017, 35, 728–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luppa, P.B.; Bietenbeck, A.; Beaudoin, C.; Giannetti, A. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnol. Adv. 2016, 34, 139–160. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, S.; Carvalho, W.S.P.; Jiang, Y.; Serpe, M.J. Portable point-of-care diagnostic devices. Anal. Methods 2016, 8, 7847–7867. [Google Scholar] [CrossRef] [Green Version]
- Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Microchim. Acta 2018, 185, 276. [Google Scholar] [CrossRef]
- Pundir, C.; Lata, S.; Narwal, V. Biosensors for determination of D and L-amino acids: A review. Biosens. Bioelectron. 2018, 117, 373–384. [Google Scholar] [CrossRef]
- Ermiş, N.; Uzun, L.; Denizli, A. Preparation of molecularly imprinted electrochemical sensor for L-phenylalanine detection and its application. J. Electroanal. Chem. 2017, 807, 244–252. [Google Scholar] [CrossRef]
- Ou, S.-H.; Pan, L.-S.; Jow, J.-J.; Chen, H.-R.; Ling, T.-R. Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of d and l phenylalanine. Biosens. Bioelectron. 2018, 105, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Apetrei, I.; Apetrei, C. A modified nanostructured graphene-gold nanoparticle carbon screen-printed electrode for the sensitive voltammetric detection of rutin. Measurement 2018, 114, 37–43. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Study of different carbonaceous materials as modifiers of screen-printed electrodes for detection of catecholamines. IEEE Sens. J. 2014, 15, 3094–3101. [Google Scholar] [CrossRef]
- Saylan, Y.; Yilmaz, F.; Özgür, E.; Derazshamshir, A.; Yavuz, H.; Denizli, A. Molecular imprinting of macromolecules for sensor applications. Sensors 2017, 17, 898. [Google Scholar] [CrossRef] [PubMed]
- Bi, Q.; Dong, S.; Sun, Y.; Lu, X.; Zhao, L. An electrochemical sensor based on cellulose nanocrystal for the enantioselective discrimination of chiral amino acids. Anal. Biochem. 2016, 508, 50–57. [Google Scholar] [CrossRef]
- Kubota, L.T.; Gouvea, F.; Andrade, A.N.; Milagres, B.G.; Neto, G.D.O. Electrochemical sensor for NADH based on Meldola’s Blue immobilized on silica gel modified with titanium phosphate. Electrochim. Acta 1996, 41, 1465–1469. [Google Scholar] [CrossRef]
- Adamski, J.; Kochana, J. Meldola’s Blue—Doped titania sol-gel sensor for NADH determination. Open Chem. 2011, 9, 185–191. [Google Scholar] [CrossRef]
- Hope-Roberts, M.; Horobin, R. Biomedical applications and chemical nature of three dyes first synthesized by Raphael Meldola: Isamine blue, Meldola’s blue and naphthol green B. Biotech. Histochem. 2012, 87, 295–299. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Dias, S.L.; Benvenutti, E.V.; Lima, E.C.; Pavan, F.A.; Rodrigues, J.R.; Scotti, R.; Ribeiro, E.S.; Gushikem, Y. Cationic dyes immobilized on cellulose acetate surface modified with titanium dioxide: Factorial design and an application as sensor for NADH. J. Braz. Chem. Soc. 2007, 18, 1462–1472. [Google Scholar] [CrossRef]
- Njagi, J.; Erlichman, J.S.; Aston, J.W.; Leiter, J.; Andreescu, S. A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices. Sens. Actuators B Chem. 2010, 143, 673–680. [Google Scholar] [CrossRef]
- Piano, M.; Serban, S.; Pittson, R.; Drago, G.; Hart, J.P. Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola’s Blue-Reinecke salt, coated with lactate dehydrogenase and NAD+. Talanta 2010, 82, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Titoiu, A.M.; Lapauw, M.; Necula-Petrareanu, G.; Purcarea, C.; Fanjul-Bolado, P.; Marty, J.; Vasilescu, A. Carbon Nanofiber and Meldola Blue Based Electrochemical Sensor for NADH: Application to the Detection of Benzaldehyde. Electroanalysis 2018, 30, 2676–2688. [Google Scholar] [CrossRef]
- Apetrei, I.; Rodriguez-Mendez, M.; Apetrei, C.; De Saja, J. Enzyme sensor based on carbon nanotubes/cobalt (II) phthalocyanine and tyrosinase used in pharmaceutical analysis. Sens. Actuators B Chem. 2013, 177, 138–144. [Google Scholar] [CrossRef]
- Georgescu, R.; van Staden, J.F.; Stefan-van Staden, R.-I.; Boscornea, C. Evaluation of amperometric dot microsensors for the analysis of folic acid in pharmaceutical tablets and urine samples. J. Porphyr. Phthalocyanines 2015, 19, 679–687. [Google Scholar] [CrossRef]
- Foster, C.W.; Metters, J.P.; Kampouris, D.K.; Banks, C.E. Ultraflexible screen-printed graphitic electroanalytical sensing platforms. Electroanalysis 2014, 26, 262–274. [Google Scholar] [CrossRef]
- Wahab, F.; Sayyad, M.; Tahir, M.; Aziz, F.; Khan, R.; Karimov, K.S. Sensing properties of cobalt-phthalocyanine-based multipurpose sensor. J. Electron. Mater. 2017, 46, 2045–2052. [Google Scholar] [CrossRef]
- Aller-Pellitero, M.; Fremeau, J.; Villa, R.; Guirado, G.; Lakard, B.; Hihn, J.-Y.; Del Campo, F.J. Electrochromic biosensors based on screen-printed Prussian Blue electrodes. Sens. Actuators B Chem. 2019, 290, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Karyakin, A.A. Prussian blue and its analogues: Electrochemistry and analytical applications. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2001, 13, 813–819. [Google Scholar] [CrossRef]
- Katic, V.; dos Santos, P.L.; dos Santos, M.F.; Pires, B.M.; Loureiro, H.C.; Lima, A.P.; Queiroz, J.C.; Landers, R.; Muñoz, R.A.; Bonacin, J.A. 3D printed graphene electrodes modified with Prussian blue: Emerging electrochemical sensing platform for peroxide detection. ACS Appl. Mater. Interfaces 2019, 11, 35068–35078. [Google Scholar] [CrossRef]
- Hutanu, F.; Ocnaru, E.; Arsene, M.; Badea-Doni, M. Characterization of surfactant-modified prussian blue screen-printed carbon electrodes for H2O2 detection. Bull. Transilv. Univ. Brasov Ser. Eng. Sci. 2013, 6, 95–102. [Google Scholar]
- Cinti, S.; Arduini, F.; Moscone, D.; Palleschi, G.; Killard, A.J. Development of a hydrogen peroxide sensor based on screen-printed electrodes modified with inkjet-printed Prussian blue nanoparticles. Sensors 2014, 14, 14222–14234. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wu, S.; Xu, H.; Zhao, Q.; Zhang, Z.; Yao, Y. Preparation of poly (N-acetylaniline)–Prussian blue hybrid composite film and its application to hydrogen peroxide sensing. Anal. Methods 2014, 6, 8003–8010. [Google Scholar] [CrossRef]
- Bonacin, J.A.; Dos Santos, P.L.; Katic, V.; Foster, C.W.; Banks, C.E. Use of screen-printed electrodes modified by prussian blue and analogues in sensing of cysteine. Electroanalysis 2018, 30, 170–179. [Google Scholar] [CrossRef]
- Hutanu, F.; Gheorghe, G. Modified prussian blue screen printed electrodes for H2O2 detection. Food Environ. Saf. J. 2016, 12, 78–83. [Google Scholar]
- O’Halloran, M.P.; Pravda, M.; Guilbault, G.G. Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta 2001, 55, 605–611. [Google Scholar]
- Bounegru, A.V.; Apetrei, C. Voltammetric Sensors Based on Nanomaterials for Detection of Caffeic Acid in Food Supplements. Chemosensors 2020, 8, 41. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Carbonaceous Nanomaterials Employed in the Development of Electrochemical Sensors Based on Screen-Printing Technique—A Review. Catalysts 2020, 10, 680. [Google Scholar] [CrossRef]
- Jäntschi, L.; Naşcu, H.I. Chimie Analitică şi Instrumentală; Academic Press: Cambridge, MA, USA, 2009; ISBN 973-744-191-5. [Google Scholar]
- Salazar, P.; Martín, M.; O’Neill, R.; Roche, R.; González-Mora, J. Surfactant-promoted Prussian Blue-modified carbon electrodes: Enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences. Colloids Surf. B Biointerfaces 2012, 92, 180–189. [Google Scholar] [CrossRef]
- Rabinowitz, J.D.; Vacchino, J.F.; Beeson, C.; McConnell, H.M. Potentiometric measurement of intracellular redox activity. J. Am. Chem. Soc. 1998, 120, 2464–2473. [Google Scholar] [CrossRef]
- Pournaghi-Azar, M.; Ojani, R. Electrochemistry and electrocatalytic activity of polypyrrole/ferrocyanide films on a glassy carbon electrode. J. Solid State Electrochem. 2000, 4, 75–79. [Google Scholar] [CrossRef]
- Apetrei, I.; Apetrei, C. Application of voltammetric e-tongue for the detection of ammonia and putrescine in beef products. Sens. Actuators B Chem. 2016, 234, 371–379. [Google Scholar] [CrossRef]
- Fotouhi, L.; Fatollahzadeh, M.; Heravi, M.M. Electrochemical behavior and voltammetric determination of sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube. Int. J. Electrochem. Sci. 2012, 7, 3919–3928. [Google Scholar]
- Brubaker, J.P. A Diffusion Model for Cyclic Voltammetry with Nanostructured Electrode Surfaces. Master’s Thesis, University of Dayton, Dayton, OH, USA, 2014. [Google Scholar]
- Armbruster, D.A.; Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008, 29, S49. [Google Scholar] [PubMed]
- Yi, Y.; Zhang, D.; Ma, Y.; Wu, X.; Zhu, G. Dual-signal electrochemical enantiospecific recognition system via competitive supramolecular host–guest interactions: The case of phenylalanine. Anal. Chem. 2019, 91, 2908–2915. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Yang, X.; Mo, Z.; Guo, R.; Liu, N.; Zhao, P.; Liu, Z. Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Bioelectrochemistry 2019, 129, 189–198. [Google Scholar] [CrossRef]
- Aghaei, F.; Seifati, S.M.; Nasirizadeh, N. Development of a DNA biosensor for the detection of phenylketonuria based on a screen-printed gold electrode and hematoxylin. Anal. Methods 2017, 9, 966–973. [Google Scholar] [CrossRef]
- Sajini, T.; John, S.; Mathew, B. Tailoring of photo-responsive molecularly imprinted polymers on multiwalled carbon nanotube as an enantioselective sensor and sorbent for L-PABE. Compos. Sci. Technol. 2019, 181, 107676. [Google Scholar] [CrossRef]
- Wu, T.; Wei, X.; Ma, X.; Li, J. Amperometric sensing of L-phenylalanine using a gold electrode modified with a metal organic framework, a molecularly imprinted polymer, and β-cyclodextrin-functionalized gold nanoparticles. Microchim. Acta 2017, 184, 2901–2907. [Google Scholar] [CrossRef]
- Seifati, S.M.; Nasirizadeh, N.; Azimzadeh, M. Nano-biosensor based on reduced graphene oxide and gold nanoparticles, for detection of phenylketonuria-associated DNA mutation. IET Nanobiotechnol. 2017, 12, 417–422. [Google Scholar] [CrossRef]
- European Pharmacopoeia 7.0, 7th ed.; Council of Europe: Strasbourg, France, 2011; Volume 1, ISBN 92-871-6700-1.
Sensor | Slope | Active Area (cm2) | Geometric Area (cm2) | Roughness Factor |
---|---|---|---|---|
CoPc-SPCE | 0.00061675 | 0.8509 | 0.1256 | 6.77 |
MB-SPCE | 0.00218020 | 3.0080 | 23.95 | |
PB-SPCE | 0.00471540 | 6.5058 | 51.80 |
Sensor | Detection Technique | LOD (M) | Reference |
---|---|---|---|
β-CD/CNTs@rGO | CV, DPV | 0.08 × 10−6 | [67] |
Perylene-functionalized graphene/β-CD | CV, DPV | 0.08 × 10−9 for L-Phe 0.2 × 10−9 for D-Phe | [68] |
DNA (thiol modified oligonucleotide probe)/hematoxylin | CV | 8.5 × 10−12 | [69] |
MIP (4-[ (4-methacryloyloxy) phenylazo] benzoic acid)/MWCNT | CV, DPV | 0.2086 × 10−6 | [70] |
ZIF-67 Encapsulated PtPd Alloy Nanoparticle (PtPd@ZIF-67) | CV, CA | 20 × 10−9 | [19] |
MIP/thiolated β-CD/L-cysteine | CV, DPV | 0.33 × 10−12 | [71] |
gold nanoparticles/rGO/alkanethiol single-stranded DNA/Oracet blue | CV | 21.3 × 10−15 | [72] |
Drug | The Amount of Phe Reported by the Producer/mg | The Amount of Phe | |
---|---|---|---|
CV Method/mg | FTIR Method/mg | ||
Amino 75 | 75 | 75 ± 2 | 75 ± 3 |
L-Phenylalanine 500 | 500 | 500 ± 15 | 498 ± 20 |
DLPA 500 | 500 | 500 ± 14 | 503 ± 22 |
Phe Concentration Taken/M | Phe Concentration Found/M | Precision/% RSD | Recovery (%) | |
---|---|---|---|---|
Intra-day | 4 × 10−6 | 3.99 × 10−6 | 2.28 | 99.75 |
Inter-day | 5 × 10−5 | 5.014 × 10−5 | 3.02 | 100.28 |
Sample | Phe | ||
---|---|---|---|
Phe Added (×106 M) | Phe Found (×106 M) | Recovery (%) ± RSD (n = 5) | |
L-Phenylalanine (Solaray) | 3 | 3.03 | 100.5 ± 0.9 |
5 | 4.97 | 99.4 ± 0.8 | |
7 | 7.06 | 100.9 ± 0.9 | |
DLPA (Solgar) | 2 | 1.97 | 98.5 ± 0.5 |
4 | 3.96 | 99.0 ± 0.7 | |
6 | 6.06 | 101 ± 0.5 | |
Amino 75 (Solgar) | 3 | 3.04 | 101.33 ± 0.5 |
6 | 6.15 | 102.5 ± 1.0 | |
9 | 9.14 | 101.56 ± 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinu, A.; Apetrei, C. Voltammetric Determination of Phenylalanine Using Chemically Modified Screen-Printed Based Sensors. Chemosensors 2020, 8, 113. https://doi.org/10.3390/chemosensors8040113
Dinu A, Apetrei C. Voltammetric Determination of Phenylalanine Using Chemically Modified Screen-Printed Based Sensors. Chemosensors. 2020; 8(4):113. https://doi.org/10.3390/chemosensors8040113
Chicago/Turabian StyleDinu, Ancuta, and Constantin Apetrei. 2020. "Voltammetric Determination of Phenylalanine Using Chemically Modified Screen-Printed Based Sensors" Chemosensors 8, no. 4: 113. https://doi.org/10.3390/chemosensors8040113
APA StyleDinu, A., & Apetrei, C. (2020). Voltammetric Determination of Phenylalanine Using Chemically Modified Screen-Printed Based Sensors. Chemosensors, 8(4), 113. https://doi.org/10.3390/chemosensors8040113