Manganese-Doped Zinc Oxide Nanostructures as Potential Scaffold for Photocatalytic and Fluorescence Sensing Applications
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Mn-Doped ZnO Nanostructures
2.3. Characterization of Mn Doped ZnO Nanostructures
2.4. Luminescent Sensor Evaluation
2.5. Photocatalytic Properties of Mn-Doped ZnO Nanostructures toward Methyl Orange (MO)
3. Results and Discussion
3.1. Characterization of Mn-Doped ZnO Nanostructures
3.2. Mn-Doped ZnO Nanostructures as Fluorescent Sensor for Ciprofloxacin
3.3. Selectivity of Mn-Doped ZnO Nanostructures
3.4. Photocatalytic Activity against Methyl Orange (MO)
3.5. Reusability Studies of Mn-Doped ZnO Nanostructure
3.6. Plausible Mechanism for the Photocatalytic Degradation of MO
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Bartolomeu, M.; Neves, M.G.P.M.S.; Faustino, M.A.F.; Almeida, A. Wastewater chemical contaminants: Remediation by advanced oxidation processes. Photochem. Photobiol. Sci. 2018, 17, 1573–1598. [Google Scholar] [CrossRef]
- Amoatey, P.; Baawain, M.S. Effects of pollution on freshwater aquatic organisms. Water Environ. Res. 2019, 91, 1272–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Fosso-Kankeu, E.; Spiro, M.J.; Waanders, F.; Kumar, N.; Ray, S.S.; Kim, J.; Kang, M. Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Mater. Today Chem. 2020, 18, 100376. [Google Scholar] [CrossRef]
- Kumar, R.; Rana, D.; Umar, A.; Sharma, P.; Chauhan, S.; Chauhan, M.S. Ag-doped ZnO nanoellipsoids: Potential scaffold for photocatalytic and sensing applications. Talanta 2015, 137, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Lee, S.; Lee, M.; Jeong, D.H.; Baek, Y.; Yoon, J.; Kim, Y.H. Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification. Nanoscale 2015, 7, 6782–6789. [Google Scholar] [CrossRef]
- Nagendran, R. Agricultural waste and pollution. In Waste, A Handbook for Management; Academic Press: Cambridge, MA, USA, 2011; Chapter 24; pp. 341–355. [Google Scholar]
- Pandey, S.; Mishra, S.B. Sol–gel derived organic–inorganic hybrid materials: Synthesis, characterizations and applications. J. Sol-Gel Sci. Technol. 2011, 59, 73–94. [Google Scholar] [CrossRef]
- Pandey, S. A comprehensive review on recent developments in bentonite based materials used as adsorbents for wastewater treatment. J. Mol. Liq. 2017, 241, 1091–1113. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, Y.; Xie, T.; Shi, S.; Fan, H.; Wang, D. Enhancement of visible-light-driven photoresponse of Mn/ZnO system: Photogenerated charge transfer properties and photocatalytic activity. Nanoscale 2012, 4, 6393–6400. [Google Scholar] [CrossRef]
- Rathour, R.K.; Bhatia, R.K.; Rana, D.S.; Bhatt, A.K.; Thakur, N. Fabrication of thermostable and reusable nanobiocatalyst for dye decolourization by immobilization of lignin peroxidase on graphene oxide functionalized MnFe2O4 superparamagnetic nanoparticles. Bioresour. Technol. 2020, 317, 124020–124030. [Google Scholar]
- Kumar, S.; Kumar, A.; Kumar, A.; Krishnan, V. Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. Catal. Rev. 2020, 62, 346–405. [Google Scholar] [CrossRef]
- Verma, M.; Mandyal, P.; Singh, D.; Gupta, N. Recent developments in heterogeneous catalytic routes for the sustainable production of succinic acid from biomass resources. ChemSusChem 2020, 13, 4026–4034. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Krishnan, V. Perovskite oxide-based materials for energy and environment-oriented photocatalysis. ACS Catal. 2020, 10, 10253–10315. [Google Scholar] [CrossRef]
- Umar, A.; Chauhan, M.S.; Chauhan, S.; Kumar, R.; Sharma, P.; Tomar, K.J.; Wahab, R.; Hajry, A.A.; Singh, D. Applications of ZnO Nanoflowers as antimicrobial agents for Escherichia coli and enzyme-free glucose sensor. J. Biomed. Nanotechnol. 2013, 9, 1794–1802. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Klerk, C.D.; Kim, J.; Kang, M.; Fosso-Kankeu, E. Eco friendly approach for synthesis, characterization and biological activities of milk protein stabilized silver nanoparticles. Polymers 2020, 12, 1418. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Getahun, T.; Verma, M.; Villa, A.; Gupta, N. Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons. Renew. Sustain. Energy Rev. 2020, 133, 110280. [Google Scholar] [CrossRef]
- Arora, S.; Gupta, N.; Singh, V. Improved Pd/Ru metal supported graphene oxide nano-catalysts for hydrodeoxygenation (HDO) of vanillyl alcohol, vanillin and lignin. Green Chem. 2020, 22, 2018–2027. [Google Scholar] [CrossRef]
- Kim, C.D.; Min, B.K.; Jung, W.S. Preparation of graphene sheets by the reduction of carbon monoxide. Carbon 2009, 47, 1610–1612. [Google Scholar] [CrossRef]
- Glassmeyer, S.T.; Furlong, E.T.; Kolpin, D.W.; Cahill, J.D.; Zaugg, S.D.; Werner, S.L.; Meyer, M.T.; Kryak, D.D. Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination. Environ. Sci. Technol. 2005, 39, 5157–5169. [Google Scholar] [CrossRef] [Green Version]
- Beier, S.; Köster, S.; Veltmann, K.; Schröder, H.; Pinnekamp, J. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis. Water Sci. Technol. 2010, 61, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, Z.; Fan, F.; Wang, J.; Wang, S. Advanced treatment of a complex pharmaceutical wastewater by nanofiltration: Membrane foulant identification and cleaning. Desalination 2010, 251, 167–175. [Google Scholar] [CrossRef]
- Dodd, M.C.; Shah, A.D.; Gunten, U.V.; Huang, C.H. Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: Reaction kinetics, mechanisms, and transformation pathways. Environ. Sci. Technol. 2005, 39, 7065–7076. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, G.; Orn, S.; Larsson, D.G.J. Effluent from bulk drug production is toxic to aquatic vertebrates. Environ. Toxicol. Chem. 2009, 28, 2656–2662. [Google Scholar] [CrossRef] [Green Version]
- Aristilde, L.; Melis, A.; Sposito, G. Inhibition of photosynthesis by a fluoroquinolone antibiotic. Environ. Sci. Technol. 2010, 44, 1444–1450. [Google Scholar] [CrossRef]
- Belden, J.B.; Maul, J.D.; Lydy, M.J. Partitioning and photodegradation of ciprofloxacin in aqueous systems in the presence of organic matter. Chemosphere 2007, 66, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Zollinger, H. Color. Chemistry: Synthesis, Properties of Organic Dyes and Pigments; VCH Publishers: New York, NY, USA, 1987; pp. 92–102. [Google Scholar]
- Carneiro, P.A.; Nogueira, R.F.P.; Zanoni, M.V.B. Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dye. Pigment. 2007, 74, 127–132. [Google Scholar] [CrossRef]
- Negi, K.; Rana, D.S.; Kumar, M.; Sharma, P.; Kumar, R.; Umar, A.; Chauhan, S.; Chauhan, M.S. Iron oxide nanoparticles as potential scaffold for photocatalytic and sensing applications. J. Nanosci. Nanotechnol. 2019, 19, 2695–2701. [Google Scholar] [CrossRef]
- Pinheiro, H.M.; Touraud, E.; Thomas, O. Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dye. Pigment. 2004, 61, 121–139. [Google Scholar] [CrossRef]
- Pandey, S. Highly sensitive and selective chemiresist or gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review. J. Sci. Adv. Mater. Devices 2016, 1, 431–453. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Nanda, K.K. Au nanocomposite based chemiresistive ammonia sensor for health monitoring. ACS Sens. 2016, 1, 55–62. [Google Scholar] [CrossRef]
- Pandey, S.; Ramontja, J. Natural bentonite clay and its composites for dye removal: Current state and future potential. Am. J. Chem. Appl. 2016, 3, 8–19. [Google Scholar]
- Gong, M.; Xiao, S.; Yu, X.; Dong, C.; Ji, J.; Zhang, D.; Xing, M. Research progress of photocatalytic sterilization over semiconductors. RSC Adv. 2019, 9, 19278–19284. [Google Scholar] [CrossRef] [Green Version]
- Weng, B.; Qi, M.Y.; Han, C.; Tang, Z.R.; Xu, Y.J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal. 2019, 9, 4642–4687. [Google Scholar] [CrossRef]
- Ranjith Kumar, D.; Ranjith, K.S.; Haldorai, Y.; Kandasami, A.; Rajendra Kumar, R.T. Nitrogen-implanted ZnO Nanorod arrays for visible light photocatalytic degradation of a pharmaceutical drug acetaminophen. ACS Omega 2019, 4, 11973–11979. [Google Scholar] [CrossRef] [Green Version]
- Neelgund, G.M.; Oki, A. Cobalt phthalocyanine-sensitized graphene–ZnO composite: An efficient near-infrared-active photothermal agent. ACS Omega 2019, 4, 5696–5704. [Google Scholar] [CrossRef]
- Kiriarachchi, H.D.; Abouzeid, K.M.; Bo, L.; El-Shall, M.S. Growth mechanism of sea urchin ZnO nanostructures in aqueous solutions and their photocatalytic activity for the degradation of organic dyes. ACS Omega 2019, 4, 14013–14020. [Google Scholar] [CrossRef] [Green Version]
- Shafi, A.; Ahmad, N.; Sultana, S.; Sabir, S.; Khan, M.Z. Ag2S-sensitized NiO–ZnO heterostructures with enhanced visible light photocatalytic activity and acetone sensing property. ACS Omega 2019, 4, 12905–12918. [Google Scholar] [CrossRef] [Green Version]
- Kahsay, M.H.; Tadesse, A.; RamaDevi, D.; Belachew, N.; Basavaiah, K. Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications. RSC Adv. 2019, 9, 36967–36981. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, X.; Wang, Z.; Yun, S.; Guo, T.; Zhang, J.; Chen, J. Synthesis of ZnO doped high valence S element and study of photogenerated charges properties. RSC Adv. 2019, 9, 4422–4427. [Google Scholar] [CrossRef] [Green Version]
- Zong, Y.; Sun, Y.; Meng, S.; Wang, Y.; Xing, H.; Li, X.; Zheng, X. Doping effect and oxygen defects boost room temperature ferromagnetism of Co-doped ZnO nanoparticles: Experimental and theoretical studies. RSC Adv. 2019, 9, 23012–23020. [Google Scholar] [CrossRef] [Green Version]
- Achouri, F.; Corbel, S.; Balan, L.; Mozet, K.; Girot, E.; Medjahdi, G.; Said, M.B.; Ghrabi, A.; Schneider, R. Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. Mater. Des. 2016, 101, 309–316. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Zhu, L.; He, H.; Hu, L.; Huang, J.; Hu, F.; He, B.; Ye, Z. Shape control of colloidal Mn doped ZnO nanocrystals and their visible light photocatalytic properties. Nanoscale 2013, 5, 10461–10471. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Chauhan, M.S.; Dar, G.N.; Ansari, S.G.; Wilson, J.; Umar, A.; Chauhan, S.; Rana, D.S.; Sharma, P. ZnO nanoparticles: Efficient material for the detection of hazardous chemical. Sens. Lett. 2014, 12, 1393–1398. [Google Scholar] [CrossRef]
- Deore, M.K. Physical, electrical properties and gas sensing performance of pure and NiO-modified ZnO thick films. Sens. Lett. 2013, 11, 1919–1924. [Google Scholar] [CrossRef]
- Pereyra, C.J.; Marotti, R.E.; Guerguerian, G.; Elhordoy, F.; Campo, L.; Amy, L.I.; Gau, D.L.; Martín, F.; Leinen, D.; Barrado, J.R.R.; et al. Optical properties of sensitized zinc oxide nanorods electrochemically prepared. Energy Environ. Focus 2013, 2, 257–269. [Google Scholar] [CrossRef]
- Kansal, S.K. Preparation, characterization and photocatalytic activity of ZnO and Mn Doped ZnO nanoparticles. Energy Environ. Focus 2013, 2, 203–207. [Google Scholar] [CrossRef]
- Periasamy, C.; Chakrabarti, P. Effect of temperature on the electrical characteristics of nanostructured n-ZnO/p-Si heterojunction diode. Sci. Adv. Mater. 2013, 5, 1384–1391. [Google Scholar] [CrossRef]
- Kumar, M.; Negi, K.; Chauhan, S.; Umar, A.; Kumar, R.; Masuda, Y.; Chauhan, M.S. Synthesis, characterization, photocatalytic and sensing properties of Mn-Doped ZnO nanoparticles. J. Nanosci. Nanotechnol. 2019, 19, 8095–8103. [Google Scholar] [CrossRef]
- Kumar, R.; Rana, D.; Umar, A.; Sharma, P.; Chauhan, S.; Chauhan, M.S. Iron-doped ZnO nanoparticles as potential scaffold for hydrazine chemical sensor. Sens. Lett. 2014, 12, 1273–1278. [Google Scholar] [CrossRef]
- Sharma, P.; Rana, D.S.; Umar, A.; Kumar, R.; Chauhan, M.S.; Chauhan, S. Synthesis of cadmium sulfide nanosheets for smart photocatalytic and sensing applications. Ceram. Int. 2016, 42, 6601–6609. [Google Scholar] [CrossRef]
- Airnei, A.; Tigoianu, R.I.; Rusu, E.; Dorohoi, D.O. Fluorescence quenching of anthracene by nitroaromatic compounds. Dig. J. Nanomater. Bios. 2011, 6, 1265–1272. [Google Scholar]
- Hanagodimath, S.M.; Evale, B.G.; Manohara, S.R. Nonlinear fluorescence quenching of newly synthesized coumarin derivative by aniline in binary mixtures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 74, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Rana, D.S.; Umar, A.; Kumar, R.; Chauhan, M.S.; Chauhan, S. Hexagonal cadmium oxide nanodisks: Efficient scaffold for cyanide ion sensing and photo-catalytic applications. Talanta 2016, 153, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Chiavaioli, F.; Gouveia, C.A.J.; Jorge, P.A.S.; Baldini, F. Towards a uniform metrological assessment of grating-based optical fiber sensors: From refractometers to biosensors. Biosensors 2017, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Zubiate, P.; Urrutia, A.; Zamarreño, C.R.; Egea-Urra, J.; Fernández-Irigoyen, J.; Giannetti, A.; Baldini, F.; Diaz, S.; Matias, I.R.; Francisco, J.A.; et al. Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection. Biosens. Bioelectron. X 2019, 2, 100026. [Google Scholar] [CrossRef]
- Yu, J.; Li, C.; Liu, S. Effect of PSS on morphology and optical properties of ZnO. J. Colloid Interface Sci. 2008, 326, 433–438. [Google Scholar] [CrossRef]
- Li, D.; Hameda, H.; Kawano, K.; Saito, N. Synthesis and photocatalysis of monodispersed zinc oxide powders with different morphologies. J. Jpn. Soc. Powder Powder Metall. 2001, 48, 1044–1050. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakur, D.; Sharma, A.; Awasthi, A.; Rana, D.S.; Singh, D.; Pandey, S.; Thakur, S. Manganese-Doped Zinc Oxide Nanostructures as Potential Scaffold for Photocatalytic and Fluorescence Sensing Applications. Chemosensors 2020, 8, 120. https://doi.org/10.3390/chemosensors8040120
Thakur D, Sharma A, Awasthi A, Rana DS, Singh D, Pandey S, Thakur S. Manganese-Doped Zinc Oxide Nanostructures as Potential Scaffold for Photocatalytic and Fluorescence Sensing Applications. Chemosensors. 2020; 8(4):120. https://doi.org/10.3390/chemosensors8040120
Chicago/Turabian StyleThakur, Deepika, Anshu Sharma, Abhishek Awasthi, Dharmender Singh Rana, Dilbag Singh, Sadanand Pandey, and Sourbh Thakur. 2020. "Manganese-Doped Zinc Oxide Nanostructures as Potential Scaffold for Photocatalytic and Fluorescence Sensing Applications" Chemosensors 8, no. 4: 120. https://doi.org/10.3390/chemosensors8040120
APA StyleThakur, D., Sharma, A., Awasthi, A., Rana, D. S., Singh, D., Pandey, S., & Thakur, S. (2020). Manganese-Doped Zinc Oxide Nanostructures as Potential Scaffold for Photocatalytic and Fluorescence Sensing Applications. Chemosensors, 8(4), 120. https://doi.org/10.3390/chemosensors8040120