Pyridinyl Conjugate of UiO-66-NH2 as Chemosensor for the Sequential Detection of Iron and Pyrophosphate Ion in Aqueous Media
Abstract
:1. Introduction
2. Experimental
2.1. Materials and General Methods
2.1.1. Chemicals Used in this Work
2.1.2. Instrumentation
2.1.3. Sample Preparation for Photophysical Studies
2.2. Synthesis
2.2.1. Synthesis of the Linker
2.2.2. Synthesis of Compound H2L
2.2.3. UiO-66-NH2
2.2.4. UiO-66-N-Py
3. Results and Discussion
3.1. Characterization of H2L
3.2. Characterization of UiO-66-N-Py and UiO-66-NH2
3.3. Optical Properties of UiO-66-N-Py
3.4. Cation Sensing Properties of UiO-66-N-Py
3.5. Anion Sensing Properties of UiO-66-N-Py
3.6. Reusable Properties of UiO-66-N-Py
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, J.Q.; Li, G.P.; Liu, W.C.; Li, Q.L.; Li, B.H.; Gable, R.W.; Hou, L.; Batten, S.R. Two Unusual Nanocage-Based Ln-MOFs with Triazole Sites: Highly Fluorescent Sensing for Fe3+ and Cr2O2−, and Selective CO2 Capture. ChemPlusChem 2016, 81, 1299–1304. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, C.; Chen, S.; Han, L.; Zheng, H. Two Lanthanide Metal−Organic Frameworks as Remarkably Selective and Sensitive Bifunctional Luminescence Sensor for Metal Ions and Small Organic Molecules. ACS Appl. Mater. Interfaces 2017, 9, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Dang, S.; Ma, E.; Sun, Z.-M.; Zhang, H. A layer-structured EuMOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach. J. Mater. Chem. 2012, 22, 16920–16926. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, X.-H.; Zhao, Y.; Wang, P.; Liu, Y.; Azam, M.; Al Resayes, S.I.; Lu, Y.; Sun, W.-Y. Luminescent Cd(II)−organic frameworks with chelating NH2 sites for selective detection of Fe (III) and antibiotics. J. Mater. Chem. A 2017, 5, 15797–15807. [Google Scholar] [CrossRef]
- Gogoi, C.; Yousufuddin, M.; Biswas, S. A new 3D luminescent Zn(II)-organic framework containing a quinoline-2,6-dicarboxylate linker for the highly selective sensing of Fe(III) ions. Dalton Trans. 2019, 48, 1766–1773. [Google Scholar] [CrossRef]
- Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med. 1999, 341, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- Omar, F.O.; Blakley, B.R. Vitamin E is protective against iron toxicity and iron-induced hepatic vitamin E depletion in mice. J. Nutr. 1993, 123, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; García-Erce, J.A.; Remach, A.F. Disorders of iron metabolism. Part II: Iron deficiency and iron overload. J. Clin. Pathol. 2011, 64, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Rath, B.B.; Vittal, J.J. Water Stable Zn(II) Metal–Organic Framework as a Selective and Sensitive Luminescent Probe for Fe(III) and Chromate Ions. Inorg. Chem. 2020, 59, 8818–8826. [Google Scholar] [CrossRef]
- Lee, S.; Yuen, K.K.Y.; Jolliffe, K.A.; Yoon, J. Fluorescent and colorimetric chemosensors for pyrophosphate. Chem. Soc. Rev. 2015, 44, 1749–1762. [Google Scholar] [CrossRef] [Green Version]
- Timms, A.E.; Zhang, Y.; Russell, R.G.G.; Brown, M.A. Genetic studies of disorders of calcium crystal deposition. Rheumatology 2002, 41, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; He, M.; Yu, H.; Cai, X.; Tan, X.; Lu, B.; Shu, B. A quantitative method to measure telomerase activity by bioluminescence connected with telomeric repeat amplification protocol. Anal. Biochem. 2001, 299, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar] [CrossRef]
- Ataalla, M.; Mohamed, A.; Ali, M.A.; Hassan, M.; Hamad, N.; Afify, A.S. WO3-Based Glass-Crystalline Sensor for Selective Detection of Ammonia Gas. In Nanoscience and Nanotechnology in Security and Protection against CBRN Threats. NATO Science for Peace and Security Series B: Physics and Biophysics; Petkov, P., Achour, M., Popov, C., Eds.; Springer: Dordrecht, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.G.; Lu, X.M.; Yang, C.D.; Fan, N.N.; Yang, Z.T.; Wang, L.Y.; Ma, L.F. {Zn6} Cluster based metal–organic framework with enhanced room-temperature phosphorescence and optoelectronic performances. Inorg. Chem. 2019, 58, 6215–6221. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, L.; Fan, N.N.; Han, M.L.; Yang, G.P.; Ma, L.F. Porous Zn(II)-based metal—organic frameworks decorated with carboxylate groups exhibiting high gas adsorption and separation of organic dyes. Cryst. Growth Des. 2018, 18, 7114–7121. [Google Scholar] [CrossRef]
- Liu, Y.; Xie Cheng, X.-Y.C.; Shao, Z.-S.; Wang, H.-S. Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms. J. Mater. Chem. C 2019, 7, 10743–10763. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-based metal–organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367. [Google Scholar] [CrossRef]
- Yang, J.; Dai, Y.; Zhu, X.; Wang, Z.; Li, Y.; Zhuang, Q.; Shi, J.; Gu, J. Metal-Organic Frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. J. Mater. Chem. A 2015, 3, 7445–7452. [Google Scholar] [CrossRef]
- Helal, A.; Shaikh, M.N.; Aziz, M.A. Dual sensing of copper ion and chromium (VI) oxyanions by benzotriazole functionalized UiO-66 metal-organic framework in aqueous media. J. Photochem. Photobiol. A 2020, 389, 112238–112245. [Google Scholar] [CrossRef]
- Sanda, S.; Parshamoni, S.; Biswas, S.; Konar, S. Highly Selective Detection of Palladium and Picric Acid by a Luminescent MOF: A Dual Functional Fluorescent Sensor. Chem. Commun. 2015, 51, 6576–6579. [Google Scholar] [CrossRef]
- Helal, A.; Nguyen, H.L.; Al-Ahmed, A.; Cordova, K.E.; Yamani, Z.H. An Ultrasensitive and Selective Metal-Organic Framework Chemosensor for Palladium Detection in Water. Inorg. Chem. 2019, 58, 1738–1741. [Google Scholar] [CrossRef]
- Zheng, M.; Tan, H.; Xie, Z.; Zhang, L.; Jing, X.; Sun, Z. Fast Response and High Sensitivity Europium Metal Organic Framework Fluorescent Probe with Chelating Terpyridine Sites for Fe3+. ACS Appl. Mater. Interfaces 2013, 5, 1078–1083. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Crisponi, G. Recent Advances on Iron(III) Selective Fluorescent Probes with Possible Applications in Bioimaging. Molecules 2019, 24, 3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Jin, W. Highly selective and sensitive colorimetric probe for hydrogen sulfide by a copper(II) complex of azo-dye based on chemosensing ensemble approach. Spectrochim. Acta Part A 2012, 90, 35–39. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, B.; Tan, C.; Liu, F.; Cao, J.; Tan, Y.; Jiang, Y. Simultaneous bioimaging recognition of Al3+ and Cu2+ in living-cell, and further detection of F− and S2− by a simple fluorogenic benzimidazole-based chemosensor. Talanta 2016, 161, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Aulsebrook, M.L.; Biswas, S.; Leaver, F.M.; Grace, M.R.; Graham, B.; Barrios, A.M.; Tuck, K.L. A luminogenic lanthanide-based probe for the highly selective detection of nanomolar sulfide levels in aqueous samples. Chem. Commun. 2017, 153, 4911–4914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.H.; Lee, S.Y.; Ahn, H.M.; Kim, C. A novel colorimetric chemosensor for the sequential detection of Ni2+ and CN− in aqueous solution. Sens. Actuators B Chem 2017, 242, 25–34. [Google Scholar] [CrossRef]
- Hu, J.; Hu, Z.; Chen, Z.; Gao, H.W.; Uvdal, K. A logic gate based fluorogenic probe for Hg2+ detection and its applications in cellular imaging. Anal. Chim. Acta 2016, 919, 85–93. [Google Scholar] [CrossRef]
- You, G.R.; Jang, H.J.; Jo, T.G.; Kim, C. A novel displacement- type colorimetric chemosensor or the detection of Cu2+ and GSH in aqueous solution. RSC Adv. 2016, 6, 74400–74408. [Google Scholar] [CrossRef]
- Elmas, S.N.K.; Ozen, F.; Koran, K.; Yilmaz, I.; Gorgulu, A.O.; Erdemir, S. Coumarin Based Highly Selective “off-on off” Type Novel Fluorescent Sensor for Cu2+ and S2− in Aqueous Solution. J. Fluoresc. 2017, 27, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ngo, H.T.; Ge, Z.; Butler, S.J.; Jolliffe, K.A. Tuning colourimetric indicator displacement assays for naked-eye sensing of pyrophosphate in aqueous media. Chem. Sci. 2013, 4, 1680–1686. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helal, A.; Arafat, M.E.; Rahman, M.M. Pyridinyl Conjugate of UiO-66-NH2 as Chemosensor for the Sequential Detection of Iron and Pyrophosphate Ion in Aqueous Media. Chemosensors 2020, 8, 122. https://doi.org/10.3390/chemosensors8040122
Helal A, Arafat ME, Rahman MM. Pyridinyl Conjugate of UiO-66-NH2 as Chemosensor for the Sequential Detection of Iron and Pyrophosphate Ion in Aqueous Media. Chemosensors. 2020; 8(4):122. https://doi.org/10.3390/chemosensors8040122
Chicago/Turabian StyleHelal, Aasif, Md. Eyasin Arafat, and Mohammad Mizanur Rahman. 2020. "Pyridinyl Conjugate of UiO-66-NH2 as Chemosensor for the Sequential Detection of Iron and Pyrophosphate Ion in Aqueous Media" Chemosensors 8, no. 4: 122. https://doi.org/10.3390/chemosensors8040122
APA StyleHelal, A., Arafat, M. E., & Rahman, M. M. (2020). Pyridinyl Conjugate of UiO-66-NH2 as Chemosensor for the Sequential Detection of Iron and Pyrophosphate Ion in Aqueous Media. Chemosensors, 8(4), 122. https://doi.org/10.3390/chemosensors8040122