Fully Printed Disposable IoT Soil Moisture Sensors for Precision Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. IoT Sensor System for Precision Agriculture
2.2. Printed Sensors
2.3. Soil Sensor Testing and Calibration Procedure
3. Results and Discussion
3.1. Electrical and Optical Analysis of Sensor Elements
3.2. Regression Analysis of Sensing Characteristics of Soil Moisture Sensor Elements
3.3. Sensing Characteristics of FR4 and Plank Wood CMD Sensor Using IoT Measuring Unit
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khan, Y.; Thielens, A.; Muin, S.; Ting, J.; Baumbauer, C.; Arias, A.C. A new frontier of printed electronics: Flexible hybrid electronics. Adv. Mater. 2020, 32, 1905279. [Google Scholar] [CrossRef] [PubMed]
- Välimäki, M.K.; Sokka, L.I.; Peltola, H.B.; Ihme, S.S.; Rokkonen, T.M.J.; Kurkela, T.J.; Ollila, J.T.; Korhonen, A.T.; Hast, J.T. Printed and hybrid integrated electronics using bio-based and recycled materials—Increasing sustainability with greener materials and technologies. Int. J. Adv. Manuf. Technol. 2020, 111, 325–339. [Google Scholar] [CrossRef]
- Janeczek, K. Composite materials for printed electronics in internet of things applications. Bull. Mater. Sci. 2020, 43, 124. [Google Scholar] [CrossRef]
- Le Borgne, B.; Chung, B.-Y.; Tas, M.O.; King, S.G.; Harnois, M.; Sporea, R.A. Eco-friendly materials for daily-life inexpensive printed passive devices: Towards “Do-It-Yourself” electronics. Electronics 2019, 8, 699. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Bao, C.; Hausmann, M.; Siqueira, G.; Zimmermann, T.; Kim, W.S. 3D Printed disposable wireless ion sensors with biocompatible cellulose composites. Adv. Electron. Mater. 2019, 5, 1800778. [Google Scholar] [CrossRef]
- Kamarudin, S.F.; Mustapha, M.; Kim, J.-K. Green strategies to printed sensors for healthcare applications. Polym. Rev. 2020, 1–41. [Google Scholar] [CrossRef]
- Khosla, A.; Arya, S.; Nagahara, L.A.; Thundat, T.; Kawakami, M.; Furukawa, H. Additive manufacturing: Sustainable manufacturing of flexible sensors, systems and devices. In ECS Meeting Abstracts; IOP Publishing: Bristol, UK, 2020; p. 2200. [Google Scholar]
- Khanna, A.; Kaur, S. Evolution of internet of things (IoT) and its significant impact in the field of precision agriculture. Comput. Electron. Agric. 2019, 157, 218–231. [Google Scholar] [CrossRef]
- Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [Google Scholar] [CrossRef]
- Navarro, E.; Costa, N.; Pereira, A. A systematic review of IoT solutions for smart farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef]
- Loučka, R.; Homolka, P.; Jančík, F.; Koukolová, V.; Kubelková, P.; Tyrolová, Y.; Výborná, A.; Jambor, V.; Vosynková, B.; Nerušil, P.; et al. Precision farming to better results in nutrition. In Elements of Precision Agriculture in Livestock Farming; Institute of Animal Science: Prague, Czech Republic, 2019. [Google Scholar]
- Menšík, L.; Nerušil, P.; Míka, V.; Loučka, R.; Jambor, V. History and current use of near-infrared Spectroscopy (NIRS) for the analysis of forage and preserved feed at grasland research station Jevíčko in the Czech Republic. In Proceedings of the 18th International Symposium Forage Conservation, Brno, Czech Republic, 13–16 August 2019. [Google Scholar]
- Codeluppi, G.; Cilfone, A.; Davoli, L.; Ferrari, G. LoRaFarM: A LoRaWAN-based smart farming modular IoT architecture. Sensors 2020, 20, 2028. [Google Scholar] [CrossRef] [Green Version]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; An, X.; Zhao, Q.; Liu, H.; Xia, L.; Sun, X.; Guo, Y. State-of-the-art internet of things in protected agriculture. Sensors 2019, 19, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.L.; Singh, D.N.; Baghini, M.S. A critical review of soil moisture measurement. Measurement 2014, 54, 92–105. [Google Scholar] [CrossRef]
- Serrano, D.; Ávila, E.; Barrios, M.; Darghan, A.; Lobo, D. Surface soil moisture monitoring with near-ground sensors: Performance assessment of a matric potential-based method. Measurement 2020, 155, 107542. [Google Scholar] [CrossRef]
- Cooper, J.D. Soil Water Measurement: A Practical Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Quinones, H.; Ruelle, P.; Nemeth, I. Comparison of three calibration procedures for TDR soil moisture sensors. Irrig. Drain. 2003, 52, 203–217. [Google Scholar] [CrossRef]
- Deng, X.; Gu, H.; Yang, L.; Lyu, H.; Cheng, Y.; Pan, L.; Fu, Z.; Cui, L.; Zhang, L. A method of electrical conductivity compensation in a low-cost soil moisture sensing measurement based on capacitance. Measurement 2020, 150, 107052. [Google Scholar] [CrossRef]
- González-Teruel, J.D.; Torres-Sánchez, R.; Blaya-Ros, P.J.; Toledo-Moreo, A.B.; Jiménez-Buendía, M.; Soto-Valles, F. Design and calibration of a low-cost SDI-12 soil moisture sensor. Sensors 2019, 19, 491. [Google Scholar] [CrossRef] [Green Version]
- Protim Goswami, M.; Montazer, B.; Sarma, U. Design and characterization of a fringing field capacitive soil moisture sensor. IEEE Trans. Instrum. Meas. 2019, 68, 913–922. [Google Scholar] [CrossRef]
- Chakraborty, M.; Malkani, A.; Biswas, K. Hand-held soil moisture meter using polymer coated sensor. IEEE Instrum. Meas. Mag. 2019, 22, 24–29. [Google Scholar] [CrossRef]
- Pichorim, S.F.; Gomes, N.J.; Batchelor, J.C. Two solutions of soil moisture sensing with RFID for landslide monitoring. Sensors 2018, 18, 452. [Google Scholar] [CrossRef] [Green Version]
- da Fonseca, N.S.S.M.; Freire, R.C.S.; Batista, A.; Fontgalland, G.; Tedjini, S. A passive capacitive soil moisture and environment temperature UHF RFID based sensor for low cost agricultural applications. In Proceedings of the 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aguas de Lindoia, Brazil, 27–30 August 2017; pp. 1–4. [Google Scholar]
- Schubert, M.J.W.; Seign, S.; Dai, Q.; Hinterseer, S.; Pielmeier, F.; Pietsch, A.; Seebauer, C.; Weiß, J.; Yu, C.; Zenger, S. Capacitive sensor technology for soil moisture monitoring networks. In Proceedings of the 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, Georgia, 5–8 December 2017; pp. 190–193. [Google Scholar]
- Shirahama, Y.; Shigeta, R.; Kawahara, Y.; Asami, T.; Kojima, Y.; Nishioka, K. Implementation of wide range soil moisture profile probe by coplanar plate capacitor on film substrate. In Proceedings of the 2015 IEEE SENSORS, IEEE, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Kojima, Y.; Shigeta, R.; Miyamoto, N.; Shirahama, Y.; Nishioka, K.; Mizoguchi, M.; Kawahara, Y. Low-cost soil moisture profile probe using thin-film capacitors and a capacitive touch sensor. Sensors 2016, 16, 1292. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.N.; Rane, A.K.; Baginski, M.E.; Richard, J.; Hartzog, Z.; Elton, D.J. A Capacitive fringing field sensor design for moisture measurement based on printed circuit board technology. IEEE Trans. Instrum. Meas. 2012, 61, 1105–1112. [Google Scholar] [CrossRef]
- Shigeta, R.; Kawahara, Y.; Goud, G.D.; Naik, B.B. Capacitive-touch-based soil monitoring device with exchangeable sensor probe. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar]
- Artigas, J.; Jimenez, C.; Lemos, S.G.; Nogueira, A.R.A.; Torre-Neto, A.; Alonso, J. Development of a screen-printed thick-film nitrate sensor based on a graphite-epoxy composite for agricultural applications. Sens. Actuators B Chem. 2003, 88, 337–344. [Google Scholar] [CrossRef]
- Kim, S.; Traille, A.; Lee, H.; Aubert, H.; Yoshihiro, K.; Georgiadis, A.; Collado, A.; Tentzeris, M.M. Inkjet-printed sensors on paper substrate for agricultural applications. In Proceedings of the 2013 European Microwave Conference, Nuremberg, Germany, 6–10 October 2013; pp. 866–869. [Google Scholar]
- Atkinson, J.K.; Sophocleous, M. A novel thick-film screen printed electrical conductivity sensor for measurement of liquid and soil conductivity. In Proceedings of the Sensors, 2014 IEEE, Valencia, Spain, 2–5 November 2014; pp. 86–89. [Google Scholar]
- Rêgo Segundo, A.K.; Silva Pinto, É.; Almeida Santos, G.; de Barros Monteiro, P.M. Capacitive impedance measurement: Dual-frequency approach. Sensors 2019, 19, 2539. [Google Scholar] [CrossRef] [Green Version]
- WRB, I.W.G. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; p. 106. [Google Scholar]
- Němeček, J.; Mühlhanselová, M.; Macků, J.; Vavříček, D.; Novák, P. Czech Taxonomic Soil Classification System; Czech University of Life Sciences: Praha-Suchdol, Czech Republic, 2011. [Google Scholar]
- Meloun, M.; Militký, J. A Compendium of Statistical Data Processing, 3rd ed.; Karolinum: Prague, Czech Republic, 2012. [Google Scholar]
Material | Thickness (μm) | Surface Roughness (µm) | Sheet Resistance (Ω) | Resistivity (Ω.m) |
---|---|---|---|---|
Cu | 35.0 | 0.379 | 4.68 × 10−4 | 1.64 × 10−8 |
AGS | 6.5 | 0.839 | 3.61 × 10−2 | 2.34 × 10−7 |
CSP | 40.5 | 1.290 | 8.74 | 3.54 × 10−4 |
CMD | 310.0 | 1.970 | 1.73 | 5.35 × 10−4 |
CMD/Plank | 149.3 | 2.150 | 3.65 | 5.45 × 10−4 |
Luvisol | Chernozem | |||||
---|---|---|---|---|---|---|
Intercept | Slope | R2 | Intercept | Slope | R2 | |
Cu | 12.0 (5.0) | 3.0 (0.3) | 0.960 | 11.7 (9.3) | 2.8 (0.3) | 0.957 |
AGS | 13.2 (5.6) | 2.7 (0.3) | 0.959 | 11.7 (9.9) | 2.7 (0.4) | 0.947 |
CMD | 16.0 (3.2) | 2.4 (0.2) | 0.974 | 21.0 (8.4) | 1.9 (0.3) | 0.923 |
CSP | 19.1 (2.1) | 1.2 (0.1) | 0.954 | 19.5 (2.2) | 1.0 (0.1) | 0.980 |
Soil Luvisol + Chernozem | Soil Luvisol + Chernozem After Data Filtering | ||||||
---|---|---|---|---|---|---|---|
Intercept | Slope | R2 | Intercept | Slope | R2 | ||
Cu | 12.9 (4.2) | 2.8 (0.2) | 0.958 | Without revision of model | |||
AGS | 13.4 (4.2) | 2.7 (0.2) | 0.953 | ||||
CMD | 20.1 (4.1) | 2.0 (0.2) | 0.925 | 18.6 (2.6) | 2.2 (0.1) | 0.972 | |
CSP | 22.9 (3.3) | 0.8 (0.2) | 0.747 | 16.3 (1.5) | 0.9 (0.1) | 0.949 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrový, T.; Vik, R.; Pretl, S.; Syrová, L.; Čengery, J.; Hamáček, A.; Kubáč, L.; Menšík, L. Fully Printed Disposable IoT Soil Moisture Sensors for Precision Agriculture. Chemosensors 2020, 8, 125. https://doi.org/10.3390/chemosensors8040125
Syrový T, Vik R, Pretl S, Syrová L, Čengery J, Hamáček A, Kubáč L, Menšík L. Fully Printed Disposable IoT Soil Moisture Sensors for Precision Agriculture. Chemosensors. 2020; 8(4):125. https://doi.org/10.3390/chemosensors8040125
Chicago/Turabian StyleSyrový, Tomáš, Robert Vik, Silvan Pretl, Lucie Syrová, Jiří Čengery, Aleš Hamáček, Lubomír Kubáč, and Ladislav Menšík. 2020. "Fully Printed Disposable IoT Soil Moisture Sensors for Precision Agriculture" Chemosensors 8, no. 4: 125. https://doi.org/10.3390/chemosensors8040125
APA StyleSyrový, T., Vik, R., Pretl, S., Syrová, L., Čengery, J., Hamáček, A., Kubáč, L., & Menšík, L. (2020). Fully Printed Disposable IoT Soil Moisture Sensors for Precision Agriculture. Chemosensors, 8(4), 125. https://doi.org/10.3390/chemosensors8040125