Ultrathin PANI-Decorated, Highly Purified and Well Dispersed Array Cncs for Highly Sensitive HCHO Sensors
Abstract
:1. Introduction
2. Experimental Method
2.1. Preparation of Cu-Based Catalysts
2.2. Synthesis of Array CNCs
2.3. Synthesis of Array PANI-CNCs
2.4. Characterization
2.5. Fabrication of QCM Sensor and Sensing Performance
3. Results and Discussion
3.1. Fabrication and Characterization of Array CNCs
3.2. Confirmation of Surficial Decoration of PANI on Array CNCs
3.3. Detection Performance of Array PANI-CNC-Based QCM Sensors
3.4. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Gao, Z.; Tang, S.; Chen, C.; Duan, F.; Zhao, S.; Lin, S.; Feng, Y.; Zhou, L.; Qin, Y. Microwave Absorption Properties of Carbon Nanocoils Coated with Highly Controlled Magnetic Materials by Atomic Layer Deposition. ACS Nano 2012, 6, 11009–11017. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ran, G.; Wan, G.; Yang, P.; Gao, Z.; Lin, S.; Fu, C.; Qin, Y. Size-Selective Catalytic Growth of Nearly 100% Pure Carbon Nanocoils with Copper Nanoparticles Produced by Atomic Layer Deposition. ACS Nano 2014, 8, 5330–5338. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Zhang, B.; Gu, X.; Liang, H.; Yang, H.; Gao, Z.; Wang, J.; Qin, Y. A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition. Angew. Chem. 2016, 55, 7081–7085. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Dong, M.; Wang, G.; Sheng, P.; Wu, Z.; Yang, H.; Zhang, B.; Wang, G.; Wang, J.; Qin, Y. Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions. Angew. Chem. 2015, 54, 9006–9010. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Qin, Y. Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition. Acc. Chem. Res. 2017, 50, 2309–2316. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, Y.; Xiang, Q.; Cheng, Z.; Chen, Y.; Xu, J. One novel humidity-resistance formaldehyde molecular probe based hydrophobic diphenyl sulfone urea dry-gel: Synthesis, sensing performance and mechanism. Sens. Actuators B Chem. 2017, 251, 590–600. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Xiang, Q.; Chen, Y.; Duan, Z.; Xu, J. High Performance Formaldehyde Detection Based on a Novel Copper (II) Complex Functionalized QCM Gas Sensor. Sens. Actuators B Chem. 2017, 248, 820–828. [Google Scholar] [CrossRef]
- Wang, L. Metal-organic frameworks for QCM-based gas sensors: A review. Sens. Actuators A Phys. 2020, 307, 111984. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Q.; Xu, X.; Liu, X.; Li, Q.; Guo, J.; Torad, N.L.; Alshehri, S.M.; Ahamad, T.; Hossain, M.S.A.; et al. Assembling Well-Arranged Covalent Organic Frameworks on MOF-Derived Graphitic Carbon for Remarkable for-Maldehyde Sensing. Nanoscale 2020, 12, 15611–15619. [Google Scholar] [CrossRef]
- Znamenskaya, Y.; Björklund, S.; Kocherbitov, V.; Alfredsson, V. Effect of Hydration and Dehydration on the Properties of SBA-15 Layer Studied by Humidity Scanning QCM-D. Microporous Mesoporous Mater. 2016, 230, 58–65. [Google Scholar] [CrossRef]
- Lou, H.; Shen, C.; Xiang, Q.; Xu, J.; Lou, T. FDU-12 Mesoporous Materials Detection Hg (II) Ions by QCM. Nano 2016, 11, 1650094. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Liu, Y.; Cao, A.; Qian, W.; Lu, Y.; Wei, F. Energy-Absorbing Hybrid Composites Based on Alternate Car-Bon-Nanotube and Inorganic Layers. Adv. Mater. 2009, 21, 2876–2880. [Google Scholar] [CrossRef]
- Zhao, M.-Q.; Zhang, Q.; Jia, X.-L.; Huang, J.-Q.; Zhang, Y.-H.; Wei, F. Hierarchical Composites of Single/Double-Walled Carbon Nanotubes Interlinked Flakes from Direct Carbon Deposition on Layered Double Hydroxides. Adv. Funct. Mater. 2010, 20, 677–685. [Google Scholar] [CrossRef]
- Lv, R.; Cui, T.; Jun, M.-S.; Zhang, Q.; Cao, A.; Su, D.S.; Zhang, Z.; Yoon, S.-H.; Miyawaki, J.; Mochida, I.; et al. Open-Ended, N-Doped Carbon Nanotube-Graphene Hybrid Nanostructures as High-Performance Catalyst Support. Adv. Funct. Mater. 2011, 21, 999–1006. [Google Scholar] [CrossRef]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. Chemiresistive polyaniline-based gas sensors: A mini review. Sens. Actuators B Chem. 2015, 220, 534–548. [Google Scholar] [CrossRef]
- Choi, H.H.; Lee, J.; Dong, K.-Y.; Ju, B.-K.; Lee, W. Gas Sensing Performance of Composite Materials Using Conducting Polymer/Single-Walled Carbon Nanotubes. Macromol. Res. 2012, 20, 143–146. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced Sensitivity of Ammonia Sensor Using Graphene/Polyaniline Nanocomposite. Sens. Actuators B Chem. 2013, 178, 485–493. [Google Scholar] [CrossRef]
- Yang, M.; He, J. Graphene Oxide as Quartz Crystal Microbalance Sensing Layers for Detection of Formaldehyde. Sens. Actuators B Chem. 2016, 228, 486–490. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, X.; Huang, C.; Chen, X.; Dai, W.; Fu, X. CO Gas Sensitivity and Its Oxidation Over TiO2 Modified by PANI under UV Irradiation at Room Temperature. Appl. Catal. B Environ. 2017, 219, 379–390. [Google Scholar] [CrossRef]
- Tanrıverdi, E.E.; Uzumcu, A.T.; Kavas, H.; Demir, A.; Baykal, A. Conductivity Study of Polyaniline-Cobalt Ferrite (PANI-CoFe2O4) Nanocomposite. Nano-Micro Lett. 2011, 3, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Im, D.; Kim, D.; Jeong, D.; Park, W.I.; Chun, M.; Park, J.-S.; Kim, H.; Jung, H. Improved Formaldehyde Gas Sensing Properties of Well-Controlled Au Nanoparticle-Decorated In2O3 Nanofibers Integrated on Low Power MEMS platform. J. Mater. Sci. Technol. 2019, 38, 56–63. [Google Scholar] [CrossRef]
- Yan, D.; Xu, P.; Xiang, Q.; Mou, H.; Xu, J.; Wen, W.; Li, X.; Zhang, Y. Polydopamine Nanotubes: Bio-Inspired Synthesis, Formaldehyde Sensing Properties and Thermodynamic Investigation. J. Mater. Chem. A 2016, 4, 3487–3493. [Google Scholar] [CrossRef]
- Xu, L.; Ge, M.; Zhang, F.; Huang, H.; Sun, Y.; He, D. Nanostructured of SnO2/NiO Composite as a Highly Selective Formaldehyde Gas Sensor. J. Mater. Res. 2020, 35, 3079–3090. [Google Scholar] [CrossRef]
- Li, N.; Fan, Y.; Shi, Y.; Xiang, Q.; Wang, X.; Xu, J. A Low Temperature Formaldehyde Gas Sensor Based on Hierarchical SnO/SnO2 Nano-Flowers Assembled from Ultrathin Nanosheets: Synthesis, Sensing Performance and Mechanism. Sens. Actuators B Chem. 2019, 294, 106–115. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Yin, X.-M.; Yang, S.-L.; Zhang, L.; Bu, R.; Gao, E.-Q. Chromic and Fluorescence-Responsive Metal–Organic Frameworks Afforded by N-Amination Modification. ACS Appl. Mater. Interfaces 2021, 13, 20380–20387. [Google Scholar] [CrossRef] [PubMed]
- Akbar, S.A.; Mardhiah, A.; Saidi, N.; Lelifajri, D. The Effect of Graphite Composition on Polyaniline Film Performance for Formalin Gas Sensor. Bull. Chem. Soc. Ethiop. 2021, 34, 597–604. [Google Scholar] [CrossRef]
- Srinives, S.; Sarkar, T.; Mulchandani, A. Primary Amine-Functionalized Polyaniline Nanothin Film Sensor for Detecting Formal-Dehyde. Sens. Actuators B Chem. 2014, 194, 255–259. [Google Scholar] [CrossRef]
- Lim, J.-H.; Phiboolsirichit, N.; Mubeen, S.; Deshusses, M.A.; Mulchandani, A.; Myung, N.V. Electrical and Gas Sensing Properties of Polyaniline Functionalized Single-Walled Carbon Nanotubes. Nanotechnology 2010, 21, 75502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmar, M.; Balamurugan, C.; Lee, D.-W. PANI and Graphene/PANI Nanocomposite Films-Comparative Toluene Gas Sensing Behavior. Sensors 2013, 13, 16611–16624. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Dong, X.; Pang, Z.; Du, Y.; Xia, X.; Wei, Q.; Huang, F. Ammonia Sensing Behaviors of TiO2-PANI/PA6 Composite Nanofibers. Sensors 2012, 12, 17046–17057. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Yang, T.; Kang, Y.; Wang, Y.; Wang, S. Gas Sensing Performance of Polyaniline/ZnO Organic-Inorganic Hybrids for Detecting VOCs at Low Temperature. J. Nat. Gas. Chem. 2011, 20, 515–519. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, K.H.; Yang, X.; Yu, Y.; Lee, Y.-S. Improvement in NO Gas-Sensing Properties Using Heterojunctions between Polyaniline and Nitrogen on Activated Carbon Fibers. J. Ind. Eng. Chem. 2019, 76, 181–187. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Sin, B.C.; Ryu, K.S.; Kim, J.-C.; Chung, H.; Lee, Y. Conducting Polymer Functionalized Multi-Walled Carbon Nanotubes with Noble Metal Nanoparticles: Synthesis, Morphological Characteristics and Electrical Properties. Synth. Met. 2009, 159, 595–603. [Google Scholar] [CrossRef]
- Bai, H.; Sheng, K.; Zhang, P.; Li, C.; Shi, G. Graphene Oxide/Conducting Polymer Composite Hydrogels. J. Mater. Chem. 2011, 21, 18653–18658. [Google Scholar] [CrossRef]
- Zhang, T.; Nix, M.B.; Yoo, B.-Y.; Deshusses, M.A.; Myung, N.V. Electrochemically Functionalized Single-Walled Carbon Nano-tube Gas Sensor. Electroanalysis 2006, 18, 1153–1158. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Yu, L.; Jiang, T. Hydrophobic Polystyrene/Electro-Spun Polyaniline Coatings for Corrosion Protection. Synth. Met. 2017, 234, 166–174. [Google Scholar] [CrossRef]
- Ding, H.; Zhu, C.; Zhou, Z.; Wan, M.; Wei, Y. Hydrophobicity of Polyaniline Microspheres Deposited on a Glass Substrate. Macromol. Rapid Commun. 2006, 27, 1029–1034. [Google Scholar] [CrossRef]
- Leng, W.; Zhou, S.; Gu, G.; Wu, L. Wettability Switching of SDS-Doped Polyaniline from Hydrophobic to Hydrophilic Induced by Alkaline/Reduction Reactions. J. Colloid Interface Sci. 2012, 369, 411–418. [Google Scholar] [CrossRef]
- Fan, H.; Wang, H.; Guo, J.; Zhao, N.; Xu, J. SDBS-Assisted Preparation of Novel Polyaniline Planar-Structure: Morphology, Mechanism and Hydrophobicity. J. Colloid Interface Sci. 2013, 414, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yuan, T.; Fan, Y.; Wang, L.; Duan, Z.; Du, W.; Zhang, D.; Xu, J. A Benzene Vapor Sensor Based on a Metal-Organic Framework-Modified Quartz Crystal Microbalance. Sens. Actuators B Chem. 2020, 311, 127365. [Google Scholar] [CrossRef]
- Luo, M.-F.; Fang, P.; He, M.; Xie, Y.-L. In Situ XRD, Raman, and TPR Studies of CuO/Al2O3 Catalysts for CO Oxidation. J. Mol. Catal. A Chem. 2005, 239, 243–248. [Google Scholar] [CrossRef]
- Li, X.; Yu, L.; Zhao, W.; Shi, Y.; Yu, L.; Dong, Y.; Zhu, Y.; Fu, Y.; Liu, X.; Fu, F. Prism-Shaped Hollow Carbon Decorated with Polyaniline for Microwave Absorption. Chem. Eng. J. 2020, 379, 122393. [Google Scholar] [CrossRef]
- Ariyageadsakul, P.; Vchirawongkwin, V.; Kritayakornupong, C. Determination of Toxic Carbonyl Species Including Acetone, Formaldehyde, and Phosgene by Polyaniline Emeraldine Gas Sensor Using DFT Calculation. Sens. Actuators B Chem. 2016, 232, 165–174. [Google Scholar] [CrossRef]
- Huang, W.; Wang, X.; Jia, Y.; Li, X.; Zhu, Z.; Li, Y.; Si, Y.; Ding, B.; Wang, X.; Yu, J. Highly Sensitive Formaldehyde Sensors Based on Polyvinylamine Modified Polyacrylonitrile Nanofibers. RSC Adv. 2013, 3, 22994–23000. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, P.; Li, W.; Shi, Z.; Zhai, H. Synthesis and Characterization of a Polyaniline/Silver Nanocomposite for the Deter-Mination of Formaldehyde. Instrum. Sci. Technol. 2015, 44, 249–258. [Google Scholar] [CrossRef]
- Carquigny, S.; Redon, N.; Plaisance, H.; Reynaud, S. Development of a Polyaniline/Fluoral-P Chemical Sensor for Gaseous Formaldehyde Detection. IEEE Sens. J. 2011, 12, 1300–1306. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Mu, Z.; Miao, J.; Wang, K.; Zhang, R.; Chen, S. A Novel Composite of CdS Nanorods Growing on a Polyaniline-Cd2+ Particles Surface with Excellent Formaldehyde Gas Sensing Properties at Low Temperature. RSC Adv. 2018, 8, 30747–30754. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Feng, L.; Li, Q.; Cui, J.; Guo, J. Sensitive Formaldehyde Detection with QCM Sensor Based on PAAm/MWCNTs and PVAm/MWCNTs. ACS Omega 2021, 6, 14004–14014. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, E.; Zeinali, S. Formaldehyde Detection Using Quartz Crystal Microbalance (QCM) Nanosensor Coated by Nanoporous MIL-101(Cr) Film. Microporous Mesoporous Mater. 2020, 300, 110065. [Google Scholar] [CrossRef]
- Cao, Y.; Fan, Y.; Ma, Z.; Cheng, Z.; Xiang, Q.; Duan, Z.; Xu, J. Urea-Functionalized SBA-15 Hybrids: Post-grafting Synthesis, High-Performance Organophosphorus Sensing and Their Response Mechanism. Sens. Actuators B Chem. 2018, 273, 1162–1169. [Google Scholar] [CrossRef]
Material | Target Gas | Response/ Recovery Time | Limit of Detection | Reference |
---|---|---|---|---|
PAN-PVA | HCHO | 120 s/Not given | 0.5 ppm | [45] |
Pristine PANI | HCHO | Not given | 12.87 ppm | [27] |
PLY-PANI | HCHO | Not given | 1.11 ppm | [27] |
LYS-PANI | HCHO | Not given | 0.4 ppm | [27] |
A polyaniline/silver | HCHO | Not given | 1.24 ppm | [46] |
PANI/Fluoral-P | HCHO | 42 s/Not given | 3.7 ppm | [47] |
PVAm | HCHO | 120 s/Not given | 0.5 ppm | [45] |
Graphene oxide | HCHO | Not given | 0.06 ppm | [18] |
PANI--Cd2+ | HCHO | 25 s/30 s | Not given | [48] |
PAAm/MWCNTs | HCHO | 80 s/100 s | 0.5 ppm | [49] |
MIL-101(Cr) | HCHO | 24 s/75 s | 1.79 ppm | [50] |
PANI-CNC | HCHO | 12 s/14 s | 260 ppb | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Ma, Z.; Yang, J.; Gao, T.; Wu, Y.; Dong, Z.; Li, X.; Zeng, W.; Zhao, S.; Xu, J. Ultrathin PANI-Decorated, Highly Purified and Well Dispersed Array Cncs for Highly Sensitive HCHO Sensors. Chemosensors 2021, 9, 276. https://doi.org/10.3390/chemosensors9100276
Hu Q, Ma Z, Yang J, Gao T, Wu Y, Dong Z, Li X, Zeng W, Zhao S, Xu J. Ultrathin PANI-Decorated, Highly Purified and Well Dispersed Array Cncs for Highly Sensitive HCHO Sensors. Chemosensors. 2021; 9(10):276. https://doi.org/10.3390/chemosensors9100276
Chicago/Turabian StyleHu, Qingmin, Zhiheng Ma, Jie Yang, Tiange Gao, Yue Wu, Zhe Dong, Xuyi Li, Wen Zeng, Shichao Zhao, and Jiaqiang Xu. 2021. "Ultrathin PANI-Decorated, Highly Purified and Well Dispersed Array Cncs for Highly Sensitive HCHO Sensors" Chemosensors 9, no. 10: 276. https://doi.org/10.3390/chemosensors9100276
APA StyleHu, Q., Ma, Z., Yang, J., Gao, T., Wu, Y., Dong, Z., Li, X., Zeng, W., Zhao, S., & Xu, J. (2021). Ultrathin PANI-Decorated, Highly Purified and Well Dispersed Array Cncs for Highly Sensitive HCHO Sensors. Chemosensors, 9(10), 276. https://doi.org/10.3390/chemosensors9100276