Combining Chemical Functionalization and FinFET Geometry for Field Effect Sensors as Accessible Technology to Optimize pH Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. FinFETs Fabrication
2.2. Chemical Modification of FinFETs and SPR Sensors: Vapor-Phase APTES Silanization
2.3. pH Measurements Using FinFETs
2.4. MP-SPR Measurements
3. Results
3.1. Modification of the pH Sensitivity of the Surface Potential with APTES
3.2. Chemical Characterisation of the Surface Properties Using the Buffering Capacity Determined from the Surface Potential
3.3. Preservation of Linear Response by the FinFETs in the Output Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem. 2003, 88, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Syu, Y.-C.; Hsu, W.-E.; Lin, C.-T. Review—Field-Effect Transistor Biosensing: Devices and Clinical Applications. ECS J. Solid State Sci. Technol. 2018, 7, Q3196–Q3207. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 1970, 1, 70–71. Available online: https://ieeexplore-ieee-org.proxy.bnl.lu/stamp/stamp.jsp?tp=&arnumber=4502688 (accessed on 19 January 2021). [CrossRef] [PubMed]
- Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Merriman, B.; Torrent, I.; Rothberg, J.M. Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis 2012, 33, 3397–3417. [Google Scholar] [CrossRef]
- Moser, N.; Keeble, L.; Rodriguez-Manzano, J.; Georgiou, P. ISFET arrays for lab-on-chip technology: A review. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27–29 November 2019; pp. 57–60. [Google Scholar] [CrossRef]
- Moser, N.; Lande, T.S.; Toumazou, C.; Georgiou, P. ISFETs in CMOS and Emergent Trends in Instrumentation: A Review. IEEE Sens. J. 2016, 16, 6496–6514. [Google Scholar] [CrossRef]
- Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 2017, 98, 437–448. [Google Scholar] [CrossRef]
- Cai, J.; Ning, T.H.; Yau, J.-B.; Zafar, S. Charge sensors using inverted lateral bipolar junction transistors. Google Patents US 8,980,667 B2, 17 March 2015. [Google Scholar]
- Zaborowski, M.; Tomaszewski, D.; Dumania, P.; Grabiec, P. From FinFET to nanowire ISFET. In Proceedings of the European Solid-State Device Research Conference (ESSDERC), Bordeaux, France, 17–21 September 2012; pp. 165–168. [Google Scholar] [CrossRef]
- Nair, P.R.; Alam, M.A. Performance limits of nanobiosensors. Appl. Phys. Lett. 2006, 88, 9–11. [Google Scholar] [CrossRef]
- Chen, S.; Van Den Berg, A.; Carlen, E.T. Sensitivity and detection limit analysis of silicon nanowire bio(chemical) sensors. Sensors Actuators B Chem. 2015, 209, 486–489. [Google Scholar] [CrossRef]
- Chen, S. Silicon Nanowire Field-Effect Chemical Sensor; Wohrmann Print Service: Zutphen, The Netherlands, 2011; Volume 4, pp. 915–919. [Google Scholar]
- Rollo, S.; Rani, D.; Olthuis, W.; García, C.P. Single step fabrication of Silicon resistors on SOI substrate used as Thermistors. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef]
- Topkar, A.; Lal, R. Effect of electrolyte exposure on silicon dioxide in electrolyte-oxide-semiconductor structures. Thin Solid Films 1993, 232, 265–270. [Google Scholar] [CrossRef]
- Van Hal, R.E.G.; Eijkel, J.C.T.; Bergveld, P. A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv. Colloid Interface Sci. 1996, 69, 31–62. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Bomer, J.G.; Carlen, E.T.; Van Den Berg, A. Al2O3/silicon nanoISFET with near ideal nernstian response. Nano Lett. 2011, 11, 2334–2341. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Huang, J.; Zang, P.; Kim, J.; Hu, W. Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response. Appl. Surf. Sci. 2014, 322, 202–208. [Google Scholar] [CrossRef]
- Rollo, S.; Rani, D.; Leturcq, R.; Olthuis, W.; García, C.P. High Aspect Ratio Fin-Ion Sensitive Field Effect Transistor: Compromises toward Better Electrochemical Biosensing. Nano Lett. 2019. [Google Scholar] [CrossRef] [Green Version]
- Miscourides, N.; Georgiou, P. ISFET arrays in CMOS: A head-to-head comparison between voltage and current mode. IEEE Sens. J. 2019, 19, 1224–1238. [Google Scholar] [CrossRef]
- Rollo, S.; Rani, D.; Olthuis, W.; García, C.P. High performance Fin-FET electrochemical sensor with high-k dielectric materials. Sensors Actuators B Chem. 2020, 303, 127215. [Google Scholar] [CrossRef] [Green Version]
- Granqvist, N.; Liang, H.; Laurila, T.; Sadowski, J.; Yliperttula, M.; Viitala, T. Characterizing ultrathin and thick organic layers by surface plasmon resonance three-wavelength and waveguide mode analysis. Langmuir 2013, 29, 8561–8571. [Google Scholar] [CrossRef]
- Kari, O.K.; Rojalin, T.; Salmaso, S.; Barattin, M.; Jarva, H.; Meri, S.; Yliperttula, M.; Viitala, T.; Urtti, A. Multi-parametric surface plasmon resonance platform for studying liposome-serum interactions and protein corona formation. Drug Deliv. Transl. Res. 2017, 7, 228–240. [Google Scholar] [CrossRef]
- Zhao, H.; Brown, P.H.; Schuck, P. On the distribution of protein refractive index increments. Biophys. J. 2011, 100, 2309–2317. [Google Scholar] [CrossRef] [Green Version]
- Munief, W.M.; Heib, F.; Hempel, F.; Lu, X.; Schwartz, M.; Pachauri, V.; Hempelmann, R.; Schmitt, M.; Ingebrandt, S. Silane deposition via gas-phase evaporation and high-resolution surface characterization of the ultrathin siloxane coatings. Langmuir 2018, 34, 10217–10229. [Google Scholar] [CrossRef] [PubMed]
- Extracted from Chemical Properties of 3-Aminopropyltriethoxysilane. Available online: https://www.chemicalbook.com/ProductMSDSDetailCB8686147_EN.htm (accessed on 19 January 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, D.; Rollo, S.; Olthuis, W.; Krishnamoorthy, S.; Pascual García, C. Combining Chemical Functionalization and FinFET Geometry for Field Effect Sensors as Accessible Technology to Optimize pH Sensing. Chemosensors 2021, 9, 20. https://doi.org/10.3390/chemosensors9020020
Rani D, Rollo S, Olthuis W, Krishnamoorthy S, Pascual García C. Combining Chemical Functionalization and FinFET Geometry for Field Effect Sensors as Accessible Technology to Optimize pH Sensing. Chemosensors. 2021; 9(2):20. https://doi.org/10.3390/chemosensors9020020
Chicago/Turabian StyleRani, Dipti, Serena Rollo, Wouter Olthuis, Sivashankar Krishnamoorthy, and César Pascual García. 2021. "Combining Chemical Functionalization and FinFET Geometry for Field Effect Sensors as Accessible Technology to Optimize pH Sensing" Chemosensors 9, no. 2: 20. https://doi.org/10.3390/chemosensors9020020
APA StyleRani, D., Rollo, S., Olthuis, W., Krishnamoorthy, S., & Pascual García, C. (2021). Combining Chemical Functionalization and FinFET Geometry for Field Effect Sensors as Accessible Technology to Optimize pH Sensing. Chemosensors, 9(2), 20. https://doi.org/10.3390/chemosensors9020020