Graphite Studded with Facile-Synthesized Cu2O Nanoparticle-Based Cubes as a Novel Electrochemical Sensor for Highly Sensitive Voltametric Determination of Mebeverine Hydrochloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Preparation and Characterization of the Cu2ONPs–C and Cu2ONPs–C@G Composites
2.3. Computational Calculations
2.4. Reagents and Materials
2.5. Methodology
2.5.1. Square Wave Adsorptive Anodic Stripping Voltametric Quantification of MEB in Bulk and Dosage Forms
2.5.2. MEB Analysis from Spiked Human Urine and Plasma Samples
3. Results and Discussion
3.1. Characterization of Cu2ONPs–C and Cu2ONPs–C@G Composite
3.2. Electrochemical Behavior of MEB on the Cu2ONPs–C@G/PE
3.3. Computational Analysis Data
3.4. Optimization of Instrumental Conditions
3.5. Optimization of Experimental Parameters
3.6. Effect of Accumulation Time and Reproducibility
3.7. Analytical Characterization and Validation of the Proposed Method
3.8. Comparison with Other Analytical Methods
3.9. Interference Studies
3.10. Application of the Cu2ONPs–C@G/PE Sensor to Dosage Forms and Biological Fluids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koch, C.C. Nanostructured Materials: Processing, Properties and Applications, 2nd ed.; William Andrew: Norwich, NY, USA, 2006. [Google Scholar]
- Salavati-Niasari, M.; Davar, F. Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater. Lett. 2009, 63, 441–443. [Google Scholar] [CrossRef]
- Sasmal, A.K.; Dutta, S.; Pal, T.A. Ternary Cu2O–Cu–CuO nanocomposite: A catalyst with intriguing activity. Dalton Trans. 2016, 45, 3139–3150. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Gao, Y.; Li, L.; Wu, W.; Sun, D.; Lu, J.; Li, T. Determination of thiourea using a carbon paste electrode decorated with copper oxide nanoparticles. Microchim. Acta 2013, 180, 607–612. [Google Scholar] [CrossRef]
- Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456–461. [Google Scholar] [CrossRef]
- Huang, L.; Peng, F.; Yu, H.; Wang, H. Synthesis of Cu2O nanoboxes, nanocubes and nanospheres by polyol process and their adsorption characteristic. Mater. Res. Bull. 2008, 43, 3047–3053. [Google Scholar] [CrossRef]
- Song, Y.-J.; Han, S.-B.; Lee, H.-H.; Park, K.-W. Size–controlled Cu2O nanocubes by pulse electrodeposition. J. Korean Electrochem. Soc. 2010, 13, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Rai, P.; Sharma, A. Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties. RSC Adv. 2016, 6, 3815–3822. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-H.; Jiu, B.-B.; Gong, F.-L.; Chen, J.-L.; Zhang, H.-L. Morphology–controllable Cu2O supercrystals: Facile synthesis, facet etching mechanism and comparative photocatalytic H2 production. J. Alloys Compd. 2017, 729, 563–570. [Google Scholar] [CrossRef]
- Zeng, Q.-X.; Xu, G.-C.; Zhang, L.; Lv, Y. Porous Cu2O microcubes derived from a metal–formate framework as photocatalyst for degradation of methyl orange. Mater. Res. Bull. 2019, 119, 110537. [Google Scholar] [CrossRef]
- Li, H.; Ye, L.; Wang, Y.; Xie, C. A glassy carbon electrode modified with hollow cubic cuprous oxide for voltammetric sensing of L–cysteine. Microchim. Acta 2018, 185, 5. [Google Scholar] [CrossRef]
- Liang, X.; Gao, L.; Yang, S.; Sun, J. Facile synthesis and shape evolution of single–crystal cuprous oxide. Adv. Mater. 2009, 21, 2068–2071. [Google Scholar] [CrossRef]
- Abdelwahab, A.A.; Elseman, A.; Alotaibi, N.; Nassar, A. Simultaneous voltammetric determination of ascorbic acid, dopamine, acetaminophen and tryptophan based on hybrid trimetallic nanoparticles–capped electropretreated graphene. Microchem. J. 2020, 156, 104927. [Google Scholar] [CrossRef]
- Abdelwahab, A.A.; Naggar, A.H.; Abdelmotaleb, M.; Emran, M.Y. Ruthenium nanoparticles uniformly–designed chemically treated graphene oxide nanosheets for simultaneous voltammetric determination of dopamine and acetaminophen. Electroanalysis 2020, 32, 2156–2165. [Google Scholar] [CrossRef]
- Afzali, M.; Mostafavi, A.; Nekooie, R.; Jahromi, Z. A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti–cancer drug pemetrexed. J. Mol. Liq. 2019, 282, 456–465. [Google Scholar] [CrossRef]
- Almandil, N.B.; Ibrahim, M.; Ibrahim, H.; Kawde, A.; Shehatta, I.; Akhtar, S. A hybrid nanocomposite of CeO2–ZnO–chitosan as an enhanced sensing platform for highly sensitive voltammetric determination of paracetamol and its degradation product p–aminophenol. RSC Adv. 2019, 9, 15986–15996. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Tian, Y.; Wu, Y.; Liu, J.; Li, G.; Deng, P.; Chen, D. Electrochemical sensor for rapid and sensitive detection of tryptophan by a Cu2O nanoparticles–coated reduced graphene oxide nanocomposite. Biomolecules 2019, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Zhi, N.; Yang, L.; Xu, G.; Feng, Q.; Zhang, Q.; Sun, S. A highly sensitive uric acid electrochemical biosensor based on a nano–cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci. Rep. 2020, 10, 10607. [Google Scholar] [CrossRef]
- Sweetman, S.C. Martindale: The Complete Drug Reference; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Annaházi, A.; Róka, R.; Rosztóczy, A.; Wittmann, T. Role of antispasmodics in the treatment of irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 6031–6043. [Google Scholar] [CrossRef] [PubMed]
- Moskaleva, N.E.; Baranov, P.A.; Mesonzhnik, N.V.; Appolonova, S.A. HPLC–MS/MS method for the simultaneous quantification of desmethylmebeverine acid, mebeverine acid and mebeverine alcohol in human plasma along with its application to a pharmacokinetics study. J. Pharm. Biomed. Anal. 2017, 138, 118–125. [Google Scholar] [CrossRef]
- Panda, S.S.; Bera, V.V.R.K.; Sahoo, P.; Sahu, B. Quantitative estimation of mebeverine hydrochloride in sustained–release dosage form using an analytical lifecycle management oriented stability–indicating LC method. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 637–644. [Google Scholar] [CrossRef]
- Tulich, L.J.; Randall, J.L.; Kelm, G.R.; Wehmeyer, K.R. Determination of two mebeverine metabolites, mebeverine alcohol and desmethylmebeverine alcohol, in human plasma by a dual stable isotope–based gas chromatographic–mass spectrometric method. J. Chromatogr. B 1996, 682, 273–281. [Google Scholar] [CrossRef]
- Lotfy, H.M.; Fayez, Y.M.; Michael, A.M.; Nessim, C.K. Simultaneous determination of mebeverine hydrochloride and chlordiazepoxide in their binary mixture using novel univariate spectrophotometric methods via different manipulation pathways. Spectrochim. Acta A 2016, 155, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Derayea, S.M. An application of eosin Y for the selective spectrophotometric and spectrofluorimetric determination of mebeverine hydrochloride. Anal. Methods 2014, 6, 2270–2275. [Google Scholar] [CrossRef]
- Walash, M.; El–Din, M.S.; El–Enany, N.; Eid, M.; Shalan, S. First derivative synchronous fluorescence spectroscopy for the simultaneous determination of sulpiride and mebeverine hydrochloride in their combined tablets and application to real human plasma. J. Fluoresc. 2010, 20, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Elmasry, M.S.; Elazazy, M.S.; Hassan, W.S. Utilization of ion–associate formation in spectroscopic and conductometric determination of mebeverine hydrochloride in pharmaceutical formulations. Int. J. Electrochem. Sci. 2013, 8, 3888–3901. [Google Scholar]
- Elazazy, M.S.; Elmasry, M.S.; Hassan, W.S. Conductometric and spectroscopic determination of mebeverine hydrochloride and the solubility products of its ion recognition species. Int. J. Electrochem. Sci. 2012, 7, 9781–9794. [Google Scholar]
- Ibrahim, H.; Issa, Y.M.; Abu–Shawish, H.M. Potentiometric flow injection analysis of mebeverine hydrochloride in serum and urine. J. Pharm. Biomed. Anal. 2005, 36, 1053–1061. [Google Scholar] [CrossRef]
- Ibrahim, H.; Issa, Y.; Abu-Shawish, H.M. Improving the detection limits of antispasmodic drugs electrodes by using modified membrane sensors with inner solid contact. J. Pharm. Biomed. Anal. 2007, 44, 8–15. [Google Scholar] [CrossRef]
- Ali, T.A.; Mohamed, G.G.; Omar, M.; Abdrabou, V.N. Improved determination of mebeverine hydrochloride in urine, serum and pharmaceutical preparations utilizing a modified carbon paste electrode. Int. J. Electrochem. Sci. 2015, 10, 2439–2454. [Google Scholar]
- El–Desoky, H.S.; Ghoneim, M.M.; El-Badawy, F.M. Carbon nanotubes modified electrode for enhanced voltammetric sensing of mebeverine hydrochloride in formulations and human serum samples. J. Electrochem. Soc. 2017, 164, B212–B222. [Google Scholar] [CrossRef]
- Salama, N.N.; Zaazaa, H.E.; Azab, S.M.; Atty, S.A.; El-Kosy, N.M.; Salem, M.Y. Utility of gold nanoparticles/silica modified electrode for rapid selective determination of mebeverine in micellar medium: Comparative discussion and application in human serum. Ionics 2016, 22, 957–966. [Google Scholar] [CrossRef]
- Farghaly, O.A.; Taher, M.A.; Naggar, A.H.; El-Sayed, A.Y. Square wave anodic stripping voltammetric determination of metoclopramide in tablet and urine at carbon paste electrode. J. Pharm. Biomed. Anal. 2005, 38, 14–20. [Google Scholar] [CrossRef]
- Fallah, M.; Rahimnejad, M.; Asghary, M.; Mashkour, M. An electrochemical sensor based on a carbon paste electrode for the determination of buserelin. Anal. Methods 2020, 12, 33–38. [Google Scholar] [CrossRef]
- Demir, E.; Silah, H. Development of a new analytical method for determination of veterinary drug oxyclozanide by electrochemical sensor and its application to pharmaceutical formulation. Chemosensors 2020, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, B.N.; Lv, W.; Jayaprakash, G.K.; Harrath, K.; Liu, L.W.Y.; Swamy, B.E.K. Cyclic voltammetric and quantum chemical studies of a poly(methionine) modified carbon paste electrode for simultaneous detection of dopamine and uric acid. Chemosensors 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Orabi, E.A.; Orabi, M.A.; Mahross, M.H.; Abdel-Hakim, M. Computational investigation of the structure and antioxidant activity of some pyrazole and pyrazolone derivatives. J. Saudi Chem. Soc. 2018, 22, 705–714. [Google Scholar] [CrossRef]
- Mahross, M.H.; Efil, K.; El-Nasr, T.A.S.; Abbas, O.A. Synthesis, characterization and corrosion inhibition of N′-phenylbenzohydrazide derivative metal complexes: Experimental and quantum chemical studies. Z. Phys. Chem. 2019, 233, 949–972. [Google Scholar] [CrossRef]
- Naggar, A.H.; Saleh, G.A.; Omar, M.A.; Haredy, A.M.; Derayea, S.M. Square wave adsorptive anodic stripping voltammetric determination of antidiabetic drug linagliptin in pharmaceutical formulations and biological fluids using pencil graphite electrode. Anal. Sci. 2020, 36, 1031–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, G.A.; Askal, H.F.; Refaat, I.H.; Naggar, A.H.; Abdel-aal, F.A. Adsorptive square wave voltammetric determination of the antiviral drug valacyclovir on a novel sensor of copper microparticles–modified pencil graphite electrode. Arab. J. Chem. 2016, 9, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Naggar, A.H.; ElKaoutit, M.; Naranjo–Rodriguez, I.; El–Sayed, A.Y.; Hidalgo-Hidalgo de Cisneros, J.L. Use of a sonogel-carbon electrode modified with bentonite for the determination of diazepam and chlordiazepoxide hydrochloride in tablets and their metabolite oxazepam in urine. Talanta 2012, 89, 448–454. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Popova, A. Crystallographic analysis of graphite by X-ray diffraction. Coke Chem. 2017, 60, 361–365. [Google Scholar] [CrossRef]
- Chandrappa, K.; Venkatesha, T. Electrochemical bulk synthesis and characterisation of hexagonal–shaped CuO nanoparticles. J. Exp. Nanosci. 2013, 8, 516–532. [Google Scholar] [CrossRef]
- Klug, H.P. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1974. [Google Scholar]
- Shahrokhian, S.; Kohansal, R.; Ghalkhani, M.; Amini, M.K. Electrodeposition of copper oxide nanoparticles on precasted carbon nanoparticles film for electrochemical investigation of anti-HIV drug nevirapine. Electroanalysis 2015, 27, 1989–1997. [Google Scholar] [CrossRef]
- Teo, W.Z.; Ambrosi, A.; Pumera, M. Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem. Commun. 2013, 28, 51–53. [Google Scholar] [CrossRef]
- Dong, S.; Xie, Y.; Cheng, G. Cyclic voltammetric and spectroelectrochemical studies of copper in alkaline solution. Electrochim. Acta 1992, 37, 17–22. [Google Scholar] [CrossRef]
- Vázquez, M.E.; López, J.R.; Medina-Rodelo, D.; Jiménez-Edeza, M.; Castañeda-Ruelas, G.M.; López, A.M.; Herrera-Ramírez, J.M.; Méndez, P.F. Electrochemical study, structural characterization and antimicrobial activity of silver and copper oxide (CuO) nanoparticles synthesized by a green method using L–ascorbic acid and chitosan. Int. J. Electrochem. Sci. 2019, 14, 6366–6375. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Fang, J.; Li, J. Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides. J. Mol. Struc. 2002, 593, 179–185. [Google Scholar] [CrossRef]
- Khalil, N. Quantum chemical approach of corrosion inhibition. Electrochim. Acta 2003, 48, 2635–2640. [Google Scholar] [CrossRef]
- Arslan, T.; Kandemirli, F.; Ebenso, E.E.; Love, I.; Alemu, H. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium. Corros. Sci. 2009, 51, 35–47. [Google Scholar] [CrossRef]
- Obi-Egbedi, N.; Obot, I.; El-Khaiary, M.; Umoren, S.; Ebenso, E. Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some phenanthroline derivatives on mild steel surface. Int. J. Electrochem. Sci. 2011, 6, e5675. [Google Scholar]
- Gece, G. The use of quantum chemical methods in corrosion inhibitor studies. Corros. Sci. 2008, 50, 2981–2992. [Google Scholar] [CrossRef]
- Mirceski, V.; Skrzypek, S.; Stojanov, L. Square-wave voltammetry. ChemTexts 2018, 4, 17. [Google Scholar] [CrossRef]
- Gopalan, A.I.; Lee, K.-P.; Manesh, K.M.; Santhosh, P.; Kim, J.H.; Kang, J.S. Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly (4-aminothiophenol) modified electrode. Talanta 2007, 71, 1774–1781. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.C.; Miller, J.N. Statistics for Analytical Chemistry, 4th ed.; Elsevier: New York, NY, USA, 1994. [Google Scholar]
Quantum Parameter | Law Related to Quantum Parameter | MEB Values |
---|---|---|
EHOMO | – – – – – | −0.3095 |
ELUMO | – – – – – | −0.1892 |
Separation energies (∆E) | ∆E = ELUMO − EHOMO | 0.1203 |
Ionization potentials (I) | I = −EHOMO | 0.3095 |
Electron affinity (A) | A = −ELUMO | 0.1892 |
Chemical potential (u) | u = I + A/2 | 0.2493 |
Electronegativity’s (X) | X = − u | −0.2493 |
Absolute hardness (η) | η = (ELUMO − EHOMO)/2 | 0.0602 |
Absolute softness (σ) | σ = 1/η | 16.6251 |
Global electrophilicity (ω) | ω = u × u/2η | 0.5168 |
Total energy (TE) | – – – – – | −1396.9 a.u. |
Dipole moment (µ) | – – – – – | 2.1455 debye |
Parameter | Value |
---|---|
Linearity range/M | 5.00 × 10−11–1.10 × 10−9 |
LOD/M | 2.41 × 10−11 |
LOQ/M | 8.05 × 10−11 |
Intercept (µA) ± SD | 20.595 ± 0.4947 |
Slope (µA M−1) ± SD | 6.16 × 1010 ± 0.072 × 1010 |
RSD, % | 1.0932 |
Correlation coefficient, R2 | 0.9995 |
Intraday precision (n = 5), recoveries (%) for studied MEB concentrations a | 95.12–99.11 |
Interday precision, 5 days, (n = 25) recoveries (%) for studied MEB concentrations a | 94.16–101.62 |
Intraday precision (n = 5), RSD (%) for studied MEB concentrations a | 2.45 |
Interday precision, 5 days, (n = 25) RSD (%) for studied MEB concentrations a | 4.15 |
Technique | Electrode | Linearity Range a | LOD a | LOQ a | r | Sensitivity b | Ref. |
---|---|---|---|---|---|---|---|
SWAdASV c | f-MWCNT/CPE d | 0.50–35.00 | 0.13 | 0.44 | 0.9980 | 2.57 | [32] |
DPV e | GSMCPE f | 40.00−10000.00 | 1.50 | 5.00 | 0.9997 | 0.01 | [33] |
SWAdASV c | Cu2ONPs-C@G/PE g | 0.05–1.10 | 0.02 | 0.08 | 0.9995 | 616.00 | This work |
Dosage Forms | Biological Fluids | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Duspatalin | Colospasmin® Forte | Spiked Urine Sample | Spiked Plasma Sample | ||||||||
T a | F a | R b | T a | F a | R b | T a | F a | R b | T a | F a | R b |
0.215 | 0.217 | 101.00 | 0.215 | 0.210 | 98.00 | 1.073 | 1.068 | 99.60 | 1.073 | 1.090 | 101.60 |
0.429 | 0.418 | 97.50 | 0.429 | 0.427 | 99.50 | 2.145 | 2.083 | 97.10 | 2.145 | 2.062 | 96.10 |
0.644 | 0.665 | 103.33 | 0.644 | 0.646 | 100.33 | 4.291 | 4.345 | 101.25 | 4.291 | 4.473 | 104.25 |
0.858 | 0.862 | 100.50 | 0.858 | 0.880 | 102.50 | 6.436 | 6.190 | 96.17 | 6.436 | 6.297 | 97.83 |
1.073 | 1.101 | 102.60 | 1.073 | 1.092 | 101.80 | 8.582 | 8.904 | 103.75 | 8.582 | 8.481 | 98.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naggar, A.H.; Kotb, A.; Gahlan, A.A.; Mahross, M.H.; El-Sayed, A.E.-A.Y.; Abdelwahab, A.A. Graphite Studded with Facile-Synthesized Cu2O Nanoparticle-Based Cubes as a Novel Electrochemical Sensor for Highly Sensitive Voltametric Determination of Mebeverine Hydrochloride. Chemosensors 2021, 9, 35. https://doi.org/10.3390/chemosensors9020035
Naggar AH, Kotb A, Gahlan AA, Mahross MH, El-Sayed AE-AY, Abdelwahab AA. Graphite Studded with Facile-Synthesized Cu2O Nanoparticle-Based Cubes as a Novel Electrochemical Sensor for Highly Sensitive Voltametric Determination of Mebeverine Hydrochloride. Chemosensors. 2021; 9(2):35. https://doi.org/10.3390/chemosensors9020035
Chicago/Turabian StyleNaggar, Ahmed H., Ahmed Kotb, Ahmed A. Gahlan, Mahmoud H. Mahross, Abd El-Aziz Y. El-Sayed, and Adel A. Abdelwahab. 2021. "Graphite Studded with Facile-Synthesized Cu2O Nanoparticle-Based Cubes as a Novel Electrochemical Sensor for Highly Sensitive Voltametric Determination of Mebeverine Hydrochloride" Chemosensors 9, no. 2: 35. https://doi.org/10.3390/chemosensors9020035
APA StyleNaggar, A. H., Kotb, A., Gahlan, A. A., Mahross, M. H., El-Sayed, A. E. -A. Y., & Abdelwahab, A. A. (2021). Graphite Studded with Facile-Synthesized Cu2O Nanoparticle-Based Cubes as a Novel Electrochemical Sensor for Highly Sensitive Voltametric Determination of Mebeverine Hydrochloride. Chemosensors, 9(2), 35. https://doi.org/10.3390/chemosensors9020035