Highly Selective Recognition of Pyrophosphate by a Novel Coumarin-Iron (III) Complex and the Application in Living Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus and Reagents
2.2. Synthesis of Compound NL
2.3. Synthesis of NL-Fe3+ Complex
2.4. Computational Details
2.5. Calculation of Association Constant
2.6. Cytotoxicity Assays
3. Results and Discussion
3.1. Synthesis and Spectroscopic Characterization of the NL-Fe3+
3.2. Fluorescence Responses of the NL-Fe3+ towards Anions
3.3. Ultraviolet Spectrum Responses of the NL-Fe3+ towards Anions
3.4. Effects of pH
3.5. The Plausible Mechanism of NL towards Fe3+ and PPi
3.6. Fluorescence Imaging of Intracellular PPi
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, G.J.; Marks, J. Intestinal phosphate transport: A therapeutic target in chronic kidney disease and beyond. Pediatr. Nephrol. 2015, 30, 363–371. [Google Scholar] [CrossRef]
- Hansen, N.M.; Felix, R.; Bisaz, S.; Fleisch, H. Aggregation of hydroxyapatite crystals. Biochim. Biophys. Acta 1976, 451, 549–559. [Google Scholar] [CrossRef]
- Florence, W.L.T. Genetics and mechanisms of crystal deposition in calcium pyrophosphate deposition disease. Curr. Rheumatol. Rep. 2012, 14, 155–160. [Google Scholar]
- Costello, J.C.; Rosenthal, A.K.; Kurup, I.V.; Masuda, I.; Medhora, M.; Ryan, L.M. Parallel regulation of extracellular ATP and inorganic pyrophosphate: Roles of growth factors, transduction modulators, and ANK. Connect. Tissue Res. 2011, 52, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Ghosh, P.; Gharami, S.; Kumar Mondal, T.; Murmu, N. A novel coumarin based molecular switch for the sequential detection of Al3+ and F−: Application in lung cancer live imagine and construction of logic gate. Sens. Actuators B Chem. 2017, 242, 338–346. [Google Scholar] [CrossRef]
- Rosenthal, A.K.; Ryan, L.M. Calcium pyrophosphate deposition disease. N. Engl. J. Med. 2016, 374, 2575–2584. [Google Scholar] [CrossRef]
- Yang, X.F.; Xie, L.J.; Ning, R.; Gong, X.Q.; Liu, Z.; Li, Y.X.; Zheng, L.Y.; Zhang, G.G.; Gao, B.; Cui, Y.; et al. A diketopyrrolopyrrole-based near-infrared sensor for selective recognition of fluoride ions. Sens. Actuators B Chem. 2015, 210, 784–794. [Google Scholar] [CrossRef]
- Yasuhiro, S.; Rikako, N.; Shunsuke, T.; Chiharu, Y.; Takayuki, H. A naphthalimide-sulfonylhydrazine conjugate as a fluorescent chemodosimeter for hypochlorite. Chemosensors 2020, 8, 123–135. [Google Scholar]
- Miao, R.; Zheng, Q.Y.; Chen, C.F.; Huang, Z.T. A novel calix [4] arene fluorescent receptor for selective recognition of acetate anion. Tetrahedron Lett. 2005, 46, 2155–2158. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, A. Anion binding-induced white light emission using a water-tolerant fluorescent molecular tweezer. Chem. Eur. J. 2016, 22, 3224–3229. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Wang, X.M.; Feng, Y.C.; Ding, L.; Li, M.; Lin, C.S. A novel colorimetric and fluorescent chemosensor for acetate ions in aqueous media based on a rhodamine 6G-phenylurea conjugate in the presence of Fe(III) ions. Chem. Commun. 2011, 47, 1622–1624. [Google Scholar] [CrossRef]
- Bhalla, V.; Vij, V.; Kumar, M.; Sharma, P.R.; Kaur, T. Recognition of adenosine monophosphate and H2PO4− using zinc ensemble of new hexaphenylbenzene derivative: Potential bioprobe and multichannel keypad system. Org. Lett. 2012, 14, 1012–1015. [Google Scholar] [CrossRef]
- Nadella, S.; Sahoo, J.; Subramanian, P.S.; Sahu, A.; Mishra, S.; Albrecht, M. Sensing of phosphates by using luminescent EuIII and TbIII complexes: Application to the microalgal cell Chlorella vulgaris. Chem. Eur. J. 2014, 20, 6047–6053. [Google Scholar] [CrossRef]
- Ganjali, M.R.; Hosseini, M.; Memari, Z.; Faridbod, F.; Norouzi, P.; Goldooz, H.; Badiei, A. Selective recognition of monohydrogen phosphate by fluorescence enhancement of a new cerium complex. Anal. Chim. Acta 2011, 708, 107–110. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, W.; Zhou, J.; Du, G.; Jiang, L.; Ling, J.; Shen, Z. A simple and effective fluorescent chemosensor for the cascade recognition of Zn2+ and H2PO4− ions in protic media. Tetrahedron 2014, 70, 1011–1015. [Google Scholar] [CrossRef]
- Rao, A.S.; Singha, S.; Choi, W.; Ahn, K.H. Studies on acedan-based mononuclear zinc complexes toward selective fluorescent probes for pyrophosphate. Org. Biomol. Chem. 2012, 10, 8410–8417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, S.Y.; Li, K.; Zhang, W.; Liu, Y.H.; Huang, Z.; Yu, X.Q. Cd(II)-terpyridine-based complex as a ratiometric fluorescent probe for pyrophosphate detection in solution and as an imaging agent in living cells. Dalton Trans. 2015, 44, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Anbu, S.; Kamalraj, S.; Paul, A.; Jayabaskaran, C.; Pombeiro, A.J.L. The phenanthroimidazole-based dizinc (II) complex as a fluorescent probe for the pyrophosphate ion as generated in polymerase chain reactions and pyrosequencing. Dalton Trans. 2015, 44, 3930–3933. [Google Scholar] [PubMed]
- Roy, B.; Rao, A.S.; Ahn, K.H. Mononuclear Zn(II) and Cu(II) complexes of a hydroxynaphthalene-derived dipicolylamine: Fluorescent sensing behaviours toward pyrophosphate ions. Org. Biomol. Chem. 2011, 9, 7774–7779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Wu, J.; Liu, Q.L.; Gao, Y.; Liu, H.M.; Zhao, B. A highly selective coumarin-based chemosensor for the sequential detection of Fe3+ and pyrophosphate and its application in living cell imaging. Tetrahedron Lett. 2018, 59, 1860–1865. [Google Scholar] [CrossRef]
- Bender, D.R.; Kanne, D.; Frazier, J.D.; Rapoport, H. Synthesis and Derivitization of 8-Acetylpsoralens. Acetyl Migrations during Claisen Rearrangement. J. Org. Chem. 1983, 48, 2709–2719. [Google Scholar]
- Wang, W.; Wu, M.; Liu, H.M.; Liu, Q.L.; Gao, Y. A novel on-off-on fluorescent chemosensor for relay detection of Fe3+ and PPi in aqueous solution and living cells. Tetrahedron Lett. 2019, 60, 1631–1635. [Google Scholar] [CrossRef]
- Benesi, H.A.; Hildebrand, J.H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703–2707. [Google Scholar] [CrossRef]
- Beneto, A.J.; Thiagarajan, V.; Siva, A. A tunable ratiometric pH sensor based on phenanthro [9, 10–d] imidazole covalently linked with vinylpyridine. RSC Adv. 2015, 83, 67849–67852. [Google Scholar] [CrossRef]
- Yan, L.Q.; Ma, Y.; Cui, M.F.; Qi, Z.J. A novel coumarin-based fluorescence chemosensor containing L-histidine for aluminium(III) ions in aqueous solution. Anal. Methods 2015, 7, 6133–6138. [Google Scholar] [CrossRef]
- Job, P. Formation and Stability of Inorganic Complexes in Solution. Ann. Chim. 1928, 9, 113–203. [Google Scholar]
- Zhang, R.; Song, B.; Dai, Z.; Ye, Z.; Xiao, Y.; Liu, Y.; Yuan, J. Highly sensitive and selective phosphorescent chemosensors for hypochlorous acid based on ruthenium(II) complexes. Biosens. Bioelectron. 2013, 50, 1–7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhao, H.; Zhao, B.; Liu, H.; Liu, Q.; Gao, Y. Highly Selective Recognition of Pyrophosphate by a Novel Coumarin-Iron (III) Complex and the Application in Living Cells. Chemosensors 2021, 9, 48. https://doi.org/10.3390/chemosensors9030048
Wang W, Zhao H, Zhao B, Liu H, Liu Q, Gao Y. Highly Selective Recognition of Pyrophosphate by a Novel Coumarin-Iron (III) Complex and the Application in Living Cells. Chemosensors. 2021; 9(3):48. https://doi.org/10.3390/chemosensors9030048
Chicago/Turabian StyleWang, Wei, Hongren Zhao, Bing Zhao, Huimin Liu, Qinglei Liu, and Yan Gao. 2021. "Highly Selective Recognition of Pyrophosphate by a Novel Coumarin-Iron (III) Complex and the Application in Living Cells" Chemosensors 9, no. 3: 48. https://doi.org/10.3390/chemosensors9030048
APA StyleWang, W., Zhao, H., Zhao, B., Liu, H., Liu, Q., & Gao, Y. (2021). Highly Selective Recognition of Pyrophosphate by a Novel Coumarin-Iron (III) Complex and the Application in Living Cells. Chemosensors, 9(3), 48. https://doi.org/10.3390/chemosensors9030048