Pt Nanoparticles Anchored on NH2-MIL-101 with Efficient Peroxidase-Like Activity for Colorimetric Detection of Dopamine
Abstract
:1. Introduction
2. Methods
2.1. Preparation of Pt/NH2-MIL-101
2.2. Peroxidase-Like Activity of Pt/NH2-MIL-101
2.3. Detection of Dopamine
3. Results
3.1. Material Characterization
3.2. Feasibility Analysis of the Peroxidase-Like Activity of Pt/NH2-MIL-101
3.3. Steady-State Dynamic Analysis
3.4. The Mechanism of Pt/NH2-MIL-101 as a Peroxidase Mimetics and Detecting Dopamine
3.5. Detection of Dopamine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rasheed, P.A.; Lee, J.S. Recent advances in optical detection of dopamine using nanomaterials. Microchim. Acta 2017, 184, 1–28. [Google Scholar] [CrossRef]
- Ali, Ö.; Salin, İ.; Ayça, A.Ö. Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode. Talanta 2017, 165, 489–495. [Google Scholar]
- Luiza, A.M.; Adriana, P.; Leonardo, E.O.I.; Vanessa, P.S.; Valtencir, Z.; Osvaldo, N.O.; Luiz, H.C.M.; Daniel, S.C. Electrospun Polyamide 6/Poly(allylamine hydrochloride) Nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl. Mater. Interfaces 2015, 7, 4784. [Google Scholar]
- Ienny, L.F.; Bliss, E.O.; Sara, K.W.; Stephen, C.F.; Elena, V.; Jonathan, W.P.; Andrea, N.O.; Michael, A.J. Dopamine release and uptake impairments and behavioral alterations observed in mice that model fragile X mental retardation syndrome. ACS Chem. Neurosci. 2010, 1, 679–690. [Google Scholar]
- Muzzi, C.; Bertocci, E.; Terzuoli, L.; Porcelli, B.; Ciari, L.; Pagani, R.; Guerranti, R. Simultaneous determination of serum concentrations of levodopa, dopamine, 3-O-methyldopa and α-methyldopa by HPLC. Biomed. Pharmacother. 2008, 62, 253–258. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Zhang, M.; Zhang, W.; Qi, J.; Sun, X.; Wang, L.; Li, J. N-doped Cu-MOFs for efficient electrochemical determination of dopamine and sulfanilamide. J. Hazard. Mater. 2020, 390, 122157. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Wang, L.; Zhang, X.Y.; Wang, X.H.; Zhou, J.; Sun, Z.; Li, N.B.; Luo, H.Q. Ratiometric fluorescence detection of dopamine based on effect of ligand on the emission of Ag nanoclusters and aggregation-induced emission enhancement. Sens. Actuators B Chem. 2020, 310, 127858. [Google Scholar] [CrossRef]
- Niu, X.; Li, X.; Lyu, Z.; Pan, J.; Ding, S.; Ruan, X.; Zhu, W.; Du, D.; Lin, Y. Metal-organic framework based nanozymes: Promising materials for biochemical analysis. Chem. Commun. 2020, 56, 11338–11353. [Google Scholar] [CrossRef]
- Ipsita, N.; Jeet, C.; Francis, V. Metal-organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127–4170. [Google Scholar]
- Meagan, S.M.; Menachem, E. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843. [Google Scholar]
- Wang, J.; Yang, X.; Wei, T.; Bao, J.; Zhu, Q.; Dai, Z. Fe-porphyrin-based covalent organic framework as a novel peroxidase mimic for a one-pot glucose colorimetric Assay. ACS Appl. Bio Mater. 2018, 1, 382–388. [Google Scholar] [CrossRef]
- Shahad, K.A.; Somayah, S.Q.; Sun, S.; Wall, B.; Mansour, A.; Mram, A.; Abdulaziz, A.; Rabih, B.; Jasmeen, M.; Mao, Z.; et al. Sustained and targeted delivery of checkpoint inhibitors by metal-organic frameworks for cancer immunotherapy. Sci. Adv. 2021, 7, eabe7174. [Google Scholar]
- Dong, W.; Liu, X.; Shi, W.; Huang, Y. Metal-organic framework MIL-53 (Fe): Facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Adv. 2015, 5, 17451–17457. [Google Scholar] [CrossRef]
- Wang, S.; Deng, W.; Yang, L.; Tan, Y.; Xie, Q.; Yao, S. Copper-based metal-organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of staphylococcus aureus. ACS Appl. Mater. Interfaces 2017, 9, 24440–24445. [Google Scholar] [CrossRef]
- Song, Y.; Cho, D.; Sada, V.; Yoon, M. Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal–organic framework for enzymatic glucose sensor. RSC Adv. 2017, 7, 10592–10600. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Li, B.; Jiang, L.; Duan, D.; Li, Y.; Wang, J.; He, J.; Zeng, Y. Highly efficient colorimetric detection of cancer cells utilizing Fe-MIL-101 with intrinsic peroxidase-like catalytic activity over a broad pH range. RSC Adv. 2015, 5, 97910–97917. [Google Scholar] [CrossRef]
- Li, J.; Zhao, J.; Li, S.; Chen, Y.; Lv, W.; Zhang, J.; Zhang, L.; Zhang, Z.; Lu, X. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021. [Google Scholar] [CrossRef]
- Li, S.; Hou, Y.; Chen, Q.; Zhang, X.; Cao, H.; Huang, Y. Promoting active sites in MOF-derived homobimetallic hollow nanocages as a high-performance multifunctional nanozyme catalyst for biosensing and organic pollutant degradation. ACS Appl. Mater. Interfaces 2020, 12, 2581–2590. [Google Scholar] [CrossRef]
- Liu, T.; Tian, J.; Cui, L.; Liu, Q.; Wu, L.; Zhang, X. Facile strategy to prepare a metalloporphyrin-based hydrophilic porous organic polymer with enhanced peroxidase-like activity and high stability for colorimetric detection of H2O2 and glucose. Colloids Surf. B Biointerfaces 2019, 178, 137–145. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Y.; Hu, Y.; Ding, Y.; Lin, S.; Cao, W.; Wang, Q.; Wu, J.; Faheem, M.; Zhao, X.; et al. Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal. Chem. 2017, 89, 11552–11559. [Google Scholar] [CrossRef]
- Dang, X.M.; Zhao, H.M. Bimetallic Fe/Mn metal-organic-frameworks and au nanoparticles anchored carbon nanotubes as a peroxidase-like detection platform with increased active sites and enhanced electron transfer. Talanta 2019, 210, 120678. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Yamg, J.; Jiang, Y.; He, N. Peroxidase-like activity of mesoporous silica encapsulated Pt nanoparticle and its application in colorimetric immunoassay. Anal. Chim. Acta 2015, 862, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, Y.; Zhang, Y.; Zhao, S.; Fang, J.; Sheng, X.; Zhang, H. A novel hierarchical TiO2@Pt@mSiO2 hollow nanocatalyst with enhanced thermal stability. J. Alloy Compd. 2017, 71, 780–787. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Xie, W.; Han, X.; Feng, Q.; Jiang, R.; Shang, H.; Zhang, F.; Gao, L.; Wang, Z. Construction of highly active Pt/Ni-Fe layered double hydroxide electrocatalyst towards methanol oxidation in alkaline medium. Int. J. Electrochem. Sci. 2019, 14, 7961–7972. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P.A. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 2010, 48, 1124–1130. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, Z.; Bao, S.; Wang, M.; Qi, X.; Fan, Z.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, X.; Luo, Z.; Huang, X.; Tan, C.; Li, H.; Zheng, B.; Ling, B.; Huang, Y.; Yang, J.; et al. Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: An enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale 2014, 6, 12340. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Chen, X.; Shi, S.; Mo, S.; Zheng, N. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 2015, 7, 19018. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, A.; Mao, X.; Chen, Q.; Huang, Y. Engineered Mn/Co oxides nanocomposites by cobalt doping of Mn-BTC-New oxidase mimetic for colorimetric sensing of acid phosphatase. Sens. Actuators B Chem. 2019, 299, 126928. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Liu, D.; Ma, W.; Pierre, D.; Hua, H. Nanozmes based on metal-organic frameworks: Construction and prospects. Trends Anal. Chem. 2020, 133, 116080. [Google Scholar] [CrossRef]
- Dao, X.; Xie, X.; Guo, J.; Zhang, X.; Kang, Y.; Sun, W. Boosting photocatalytic CO2 reduction efficiency by heterostructures of NH2-MIL-101(Fe)/g-C3N4. ACS Appl. Energy Mater. 2020, 3, 3946–3954. [Google Scholar] [CrossRef]
- Cheng, T.; Li, X.; Huang, P.; Wang, H.; Wang, M.; Yang, W. Colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework (type Fe-MIL-88) acting as a peroxidase mimic. Microchim. Acta 2019, 186, 94. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Vázquez-González, M.; Kozell, A.; Cecconello, A.; Willner, I. Cu2+-modified metal-organic framework nanoparticles: A peroxidase-mimicking nanoenzyme. Small 2017, 14, 1703149. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Yan, J.; Huang, X.; Guo, L.; Lin, Z.; Luo, F.; Qiu, B.; Wong, K.; Chen, G. A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sens. Actuators B Chem. 2018, 267, 312–319. [Google Scholar] [CrossRef]
- Li, W.; Chen, B.; Zhang, H.; Sun, Y.; Wang, J.; Zhang, J.; Fu, Y. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury (II) ions. Biosens. Bioelectron. 2015, 66, 251–258. [Google Scholar] [CrossRef]
- Lu, J.; Hu, Y.; Wang, P.; Liu, P.; Chen, Z.; Sun, D. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sens. Actuators B Chem. 2020, 311, 127909. [Google Scholar] [CrossRef]
- Liu, J.; Ye, L.; Xiong, W.; Liu, T.; Yang, H.; Lei, J. A cerium oxide@metal–organic framework nanoenzyme as a tandem catalyst for enhanced photodynamic therapy. Chem. Commun. 2021, 57, 2820–2823. [Google Scholar] [CrossRef]
- Hu, W.; Younis, M.; Zhou, Y.; Wang, C.; Xia, X. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small 2020, 16, 2000553. [Google Scholar] [CrossRef]
- Luo, F.; Lin, Y.; Zheng, L.; Lin, X.; Chi, Y. Encapsulation of hemin in metal–organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral condition. ACS Appl. Mater. Interfaces 2015, 7, 11322–11329. [Google Scholar] [CrossRef]
- Xing, M.; Xu, W.; Dong, C.; Bai, Y.; Zeng, J.; Zhou, Y.; Zhang, J.; Yin, Y. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 2018, 4, 1359–1372. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Chen, S.; Quan, X.; Yu, H.; Zhang, Y. Enhanced fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants. J. Catal. 2017, 356, 125–132. [Google Scholar] [CrossRef]
- Georgi, A.; Polo, M.; Crincoli, K.; Mackenzie, K.; Kopinke, F. Accelerated catalytic fenton reaction with traces of iron: An Fe-Pd multicatalysis approach. Environ. Sci. Technol. 2016, 50, 5882–5891. [Google Scholar] [CrossRef]
- Raja, D.; Chuah, X.; Lu, S. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065. [Google Scholar] [CrossRef]
- Yuan, S.; Bo, X.; Guo, L. In-situ growth of iron-based metal-organic framework crystal on ordered mesoporous carbon for efficient electrocatalysis of p-nitrotoluene and hydrazine. Anal. Chim. Acta 2018, 1024, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Ana, G.; Eduarda, F.; Lima, J. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar]
- Soh, N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 2006, 386, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Iuga, C.; Alvarez-Idaboy, J.; Vivier-Bunge, A. ROS Initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments. J. Phys. Chem. B 2011, 115, 12234. [Google Scholar] [CrossRef]
- Gajendar, S.; Amisha, K.; Manu, S. Mildly acidic pH and room temperature triggered peroxidase-mimics of rGO-Cu3(OH)2(MoO4)2 cuboidal nanostructures: An effective colorimetric detection of neurotransmitter dopamine in blood serum and urine samples. CrystEngComm 2021, 23, 599–616. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J. Hollow carbon sphere supported Ag nanoparticles for promoting electrocatalytic performance of dopamine sensing. Sens. Actuators B Chem. 2019, 290, 648–655. [Google Scholar] [CrossRef]
- Ivanova, M.N.; Grayfer, E.D.; Plotnikova, E.E.; Kibis, L.S.; Darabdhara, D.; Boruah, P.K.; Das, M.R.; Fedorov, V.E. Pt-decorated boron nitride nanosheets as artificial nanozyme for detection of dopamine. ACS Appl. Mater. Interfaces 2019, 11, 22102–22112. [Google Scholar] [CrossRef]
Samples | Add (µM) | Found (µM) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|
1 | 20 | 19.30 | 96.5 | 1.86 |
2 | 30 | 30.03 | 100.1 | 1.23 |
3 | 40 | 39.83 | 99.58 | 1.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xu, K.; Chen, Y.; Zhao, J.; Du, P.; Zhang, L.; Zhang, Z.; Lu, X. Pt Nanoparticles Anchored on NH2-MIL-101 with Efficient Peroxidase-Like Activity for Colorimetric Detection of Dopamine. Chemosensors 2021, 9, 140. https://doi.org/10.3390/chemosensors9060140
Li J, Xu K, Chen Y, Zhao J, Du P, Zhang L, Zhang Z, Lu X. Pt Nanoparticles Anchored on NH2-MIL-101 with Efficient Peroxidase-Like Activity for Colorimetric Detection of Dopamine. Chemosensors. 2021; 9(6):140. https://doi.org/10.3390/chemosensors9060140
Chicago/Turabian StyleLi, Jing, Keying Xu, Yang Chen, Jie Zhao, Peiyao Du, Libing Zhang, Zhen Zhang, and Xiaoquan Lu. 2021. "Pt Nanoparticles Anchored on NH2-MIL-101 with Efficient Peroxidase-Like Activity for Colorimetric Detection of Dopamine" Chemosensors 9, no. 6: 140. https://doi.org/10.3390/chemosensors9060140
APA StyleLi, J., Xu, K., Chen, Y., Zhao, J., Du, P., Zhang, L., Zhang, Z., & Lu, X. (2021). Pt Nanoparticles Anchored on NH2-MIL-101 with Efficient Peroxidase-Like Activity for Colorimetric Detection of Dopamine. Chemosensors, 9(6), 140. https://doi.org/10.3390/chemosensors9060140