A Syringe-Based and Centrifugation-Free DNA Extraction Procedure for the Rapid Detection of Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primer Design
2.2. Bacterial Cultivation and Centrifugation-Based DNA Extraction
2.3. Fabrication of Syringe-Based DNA Extraction Device
2.4. Operation of Syringe-Based DNA Extraction Device
2.5. qPCR Assay
2.6. Spike-and-Recovery Analysis
3. Results and Discussion
3.1. Design of the Syringe-Based DNA Extraction Device
3.2. Performance of Syringe-Based DNA Extraction Device
3.3. qPCR Analysis of Extracted gDNA
3.4. Spike-and-Recovery Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group; World Health Organization: Geneva, Switzerland, 2015; p. 225. [Google Scholar]
- Christen, L.; Davidson, J.; McAllister, S.; Roth, L. Coliform and Other Indicator Bacteria: In Standard Methods for the Examination of Dairy Products; RT Marshal; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- Leclerc, H.; Mossel, D.; Edberg, S.; Struijk, C. Advances in the bacteriology of the coliform group: Their suitability as markers of microbial water safety. Annu. Rev. Microbiol. 2001, 55, 201–234. [Google Scholar] [CrossRef] [PubMed]
- Chapman, P.; Siddons, C.A.; Zadik, P.; Jewes, L. An improved selective medium for the isolation of Escherichia coli O 157. J. Med. Microbiol. 1991, 35, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Klein, H.; Fung, D.Y. Identification and quantification of fecal coliforms using violet red bile agar at elevated temperature. J. Milk Food Technol. 1976, 39, 768–770. [Google Scholar] [CrossRef]
- Edberg, S.C.; Allen, M.J.; Smith, D.B. National field evaluation of a defined substrate method for the simultaneous enumeration of total coliforms and Escherichia coli from drinking water: Comparison with the standard multiple tube fermentation method. Appl. Environ. Microbiol. 1988, 54, 1595–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, P.A. Further studies on the selectivity of violet red bile agar. J. Milk Food Technol. 1960, 23, 45–48. [Google Scholar] [CrossRef]
- Molina, F.; López-Acedo, E.; Tabla, R.; Roa, I.; Gómez, A.; Rebollo, J.E. Improved detection of Escherichia coli and coliform bacteria by multiplex PCR. BMC Biotechnol. 2015, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reza, Z.M.; Mohammad, A.; Salomeh, K.; Reza, A.G.; Hossein, S.; Maryam, S.; Azam, A.; Mana, S.; Negin, N.; Reza, K.A. Rapid detection of coliforms in drinking water of Arak city using multiplex PCR method in comparison with the standard method of culture (Most Probably Number). Asian Pac. J. Trop. Biomed. 2014, 4, 404–409. [Google Scholar]
- Hwang, S.H.; Kwon, W.Y.; Eun, H.; Jeong, S.; Park, J.S.; Kim, K.J.; Kim, H.J.; Lee, S.H.; Park, K.; Yoon, J.-J. The use of a 2-aminopurine-containing split G-quadruplex for sequence-specific DNA detection. Artif. Cells Nanomed. Biotechnol. 2018, 46, S950–S955. [Google Scholar] [CrossRef] [PubMed]
- Holst-Jensen, A.; Rønning, S.B.; Løvseth, A.; Berdal, K.G. PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal. Bioanal. Chem. 2003, 375, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Cenis, J. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res. 1992, 20, 2380. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A. Why the need for qPCR publication guidelines? —The case for MIQE. Methods 2010, 50, 217–226. [Google Scholar] [PubMed]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry 1987, 19, 11–15. [Google Scholar]
- Boom, R.; Sol, C.; Salimans, M.; Jansen, C.; Wertheim-van Dillen, P.; Van der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 1990, 28, 495–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill-Ambroz, K.L.; Brown-Guedira, G.L.; Fellers, J.P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Sci. 2002, 42, 2088–2091. [Google Scholar] [CrossRef] [Green Version]
- Aljanabi, S.M.; Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997, 25, 4692–4693. [Google Scholar] [CrossRef] [PubMed]
- Mogg, R.; Bond, J. A cheap, reliable and rapid method of extracting high-quality DNA from plants. Mol. Ecol. Notes 2003, 3, 666–668. [Google Scholar] [CrossRef]
- Ben-Amar, A.; Oueslati, S.; Mliki, A. Universal direct PCR amplification system: A time- and cost-effective tool for high-throughput applications. 3 Biotech. 2017, 7, 246. [Google Scholar] [CrossRef] [PubMed]
- Cavanaugh, S.E.; Bathrick, A. Direct PCR amplification of forensic touch and other challenging DNA samples: A review. Forensic Sci. Int. Genet. 2018, 32, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.I.; McQuillan, J.; Taiwo, M.; Parks, R.; Stenton, C.A.; Morgan, H.; Mowlem, M.C.; Lees, D.N. A highly specific Escherichia coli qPCR and its comparison with existing methods for environmental waters. Water Res. 2017, 126, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.M.; Park, J.S.; Yoon, T.H.; Park, J.; Park, K.S. Nucleic acid lateral flow assay for simultaneous detection of hygiene indicator bacteria. Anal. Bioanal. Chem. 2021, 413, 1–9. [Google Scholar]
DNA Extraction Method | E. coli (Cell Number, CFU) | A260/A280 | Concentration (ng/µL) | Time |
---|---|---|---|---|
Syringe-based method | 2.2 × 108 | 1.64 ± 0.23 | 45.23 ± 11.7 | ~2 min |
Centrifuge-based method | 2.2 × 108 | 1.72 ± 0.09 | 30.83 ± 3.6 | ~30 min |
Samples | Cell Count in Spiked Sample (CFU/mL) | Cell Count Detected Via Syringe Method (CFU/mL) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Sample 1 (work cloth) | 2.6 × 105 | 2.68 × 105 | 103.00 | 0.37 |
Sample 2 (work bench) | 3.3 × 107 | 3.34 × 107 | 101.23 | 14.93 |
Sample 3 (meat) | 4.5 × 106 | 4.41 × 106 | 98.08 | 5.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, T.; Kim, S.; Kim, J.H.; Park, K.S. A Syringe-Based and Centrifugation-Free DNA Extraction Procedure for the Rapid Detection of Bacteria. Chemosensors 2021, 9, 167. https://doi.org/10.3390/chemosensors9070167
Yoon T, Kim S, Kim JH, Park KS. A Syringe-Based and Centrifugation-Free DNA Extraction Procedure for the Rapid Detection of Bacteria. Chemosensors. 2021; 9(7):167. https://doi.org/10.3390/chemosensors9070167
Chicago/Turabian StyleYoon, Taehwi, Seokjoon Kim, Jung Ho Kim, and Ki Soo Park. 2021. "A Syringe-Based and Centrifugation-Free DNA Extraction Procedure for the Rapid Detection of Bacteria" Chemosensors 9, no. 7: 167. https://doi.org/10.3390/chemosensors9070167
APA StyleYoon, T., Kim, S., Kim, J. H., & Park, K. S. (2021). A Syringe-Based and Centrifugation-Free DNA Extraction Procedure for the Rapid Detection of Bacteria. Chemosensors, 9(7), 167. https://doi.org/10.3390/chemosensors9070167