Optical pH Sensing in Milk: A Small Puzzle of Indicator Concentrations and the Best Detection Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus and Chemicals
2.2. Preparation of the Sensor Membrane
2.3. Preparation of Milk Samples
2.4. Procedure for Determination of pH in Milk Samples
3. Results
3.1. Preparation of Sensor Membranes
3.2. Spectrophotometric Response of Sensor Membranes towards Milk of Various pH
3.3. Effect of the Content of BCP on Photometric Sensor Response
3.4. Validation of Photometric Sensor Response
3.5. Colorimetric Analysis of RGB Readout
3.6. Validation of Colorimetricmetric Sensor Response
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wencel, D.; Abel, T.; McDonagh, C. Optical Chemical pH Sensors (Review). Anal. Chem. 2014, 86, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef] [PubMed]
- Zaragozá, P.; Fuentes, A.; Fernández-Segovia, I.; Vivancos, J.-L.; Rizo, A.; Ros-Lis, J.V.; Barat, J.M.; Martínez-Máñez, R. Evaluation of sea bream (Sparus aurata) shelf life using an optoelectronic nose. Food Chem. 2013, 138, 1374–1380. [Google Scholar] [CrossRef]
- Morsy, M.K.; Zór, K.; Kostesha, N.; Alstrøm, T.S.; Heiskanen, A.; El-Tanahi, H.; Sharoba, A.; Papkovsky, D.; Larsen, J.; Khalaf, H.; et al. Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control 2016, 60, 346–352. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, S.; Chen, X. A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sens. Actuators B Chem. 2014, 198, 268–273. [Google Scholar] [CrossRef]
- Byrne, L.; Lau, K.T.; Diamond, D. Monitoring of headspace total volatile basic nitrogen from selected fish species using reflectance spectroscopic measurements of pH sensitive films. Analyst 2002, 127, 1338–1341. [Google Scholar] [CrossRef]
- Kuswandi, B.; Jayus, J.; Restyana, A.; Abdullah, A.; Heng, L.Y.; Ahmad, M. A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 2012, 25, 184–189. [Google Scholar] [CrossRef]
- Huang, X.; Xin, J.; Zhao, J. A novel technique for rapid evaluation of fish freshness using colorimetric sensor array. J. Food Eng. 2011, 105, 632–637. [Google Scholar] [CrossRef]
- Lee, K.; Park, H.; Baek, S.; Han, S.; Kim, D.; Chung, S.; Yoon, J.-Y.; Seo, J. Colorimetric array freshness indicator and digital color processing for monitoring the freshness of packaged chicken breast. Food Packag. Shelf Life 2019, 22, 100408. [Google Scholar] [CrossRef]
- Rukchon, C.; Nopwinyuwong, A.; Trevanich, S.; Jinkarn, T.; Suppakul, P. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta 2014, 130, 547–554. [Google Scholar] [CrossRef]
- Salinas, Y.; Ros-Lis, J.V.; Vivancos, J.-L.; Martínez-Máñez, R.; Marcos, M.D.; Aucejo, S.; Herranz, N.; Lorente, I.; Garcia, E. A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control 2014, 35, 166–176. [Google Scholar] [CrossRef]
- Genovese, M.E.; Abraham, S.; Caputo, G.; Nanni, G.; Kumaran, S.K.; Montemagno, C.D.; Athanassiou, A.; Fragouli, D. Photochromic Paper Indicators for Acidic Food Spoilage Detection. ACS Omega 2018, 3, 13484–13493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q.; Wang, L. Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sens. Actuators B Chem. 2016, 235, 401–407. [Google Scholar] [CrossRef]
- Goodarzi, M.M.; Moradi, M.; Tajik, H.; Forough, M.; Ezati, P.; Kuswandi, B. Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. Int. J. Biol. Macromol. 2020, 153, 240–247. [Google Scholar] [CrossRef]
- Lakade, A.J.; Sundar, K.; Shetty, P.H. Nanomaterial-based sensor for the detection of milk spoilage. LWT Food Sci. Technol. 2017, 75, 702–709. [Google Scholar] [CrossRef]
- Weston, M.; Phan, M.A.T.; Arcot, J.; Chandrawati, R. Anthocyanin-based sensors derived from food waste as an active use-by date indicator for milk. Food Chem. 2020, 326, 127017. [Google Scholar] [CrossRef]
- Pirsa, S.; Zandi, M.; Almasi, H. Determination of Quality and Spoilage of Milk by Synthesized Polypyrrole-Ag Nanocomposite Fiber at Room Temperature. J. Food Process. Eng. 2015, 39, 266–272. [Google Scholar] [CrossRef]
- Nopwinyuwong, A.; Trevanich, S.; Suppakul, P. Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage. Talanta 2010, 81, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Shiau, Y.; Wong, J.; Lin, R.; Kravis, H.; Blackmon, T.; Pakzad, T.; Jen, T.; Cheng, A.; Chang, J.; et al. Milk Spoilage: Methods and Practices of Detecting Milk Quality. Food Nutr. Sci. 2013, 4, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Gavrilenko, N.A.; Saranchina, N.V.; Sukhanov, A.; Fedan, D.A. Reversible pH-sensitive element based on bromocresol purple immobilized into the polymethacrylate matrix. Mendeleev Commun. 2018, 28, 450–452. [Google Scholar] [CrossRef]
- Saranchina, N.V.; Damzina, A.A.; Ermolaev, Y.E.; Urazov, E.V.; Gavrilenko, N.A.; Gavrilenko, M.A. Determination of antioxidant capacity of medicinal tinctures using cuprac method involving Cu(II) neocuproine immobilized into polymethacrylate matrix. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118581. [Google Scholar] [CrossRef]
- Gavrilenko, N.A.; Fedan, D.A.; Saranchina, N.V.; Gavrilenko, M.A. Solid phase colorimetric determination of iodine in food grade salt using polymethacrylate matrix. Food Chem. 2019, 280, 15–19. [Google Scholar] [CrossRef]
- Gavrilenko, N.A.; Volgina, T.N.; Pugachev, E.V.; Gavrilenko, M.A. Visual determination of malachite green in sea fish samples. Food Chem. 2019, 274, 242–245. [Google Scholar] [CrossRef]
- Dudkina, A.A.; Volgina, T.N.; Saranchina, N.V.; Gavrilenko, N.A.; Gavrilenko, M.A. Colorimetric determination of food colourants using solid phase extraction into polymethacrylate matrix. Talanta 2019, 202, 186–189. [Google Scholar] [CrossRef]
- Saranchina, N.V.; Slizhov, Y.G.; Vodova, Y.M.; Murzakasymova, N.S.; Ilyina, A.M.; Gavrilenko, N.A.; Gavrilenko, M.A. Smartphone-based colorimetric determination of fluoride anions using polymethacrylate optode. Talanta 2021, 226, 122103. [Google Scholar] [CrossRef] [PubMed]
- Ziyaina, M.; Govindan, B.N.; Rasco, B.; Coffey, T.; Sablani, S.S. Monitoring Shelf Life of Pasteurized Whole Milk Under Refrigerated Storage Conditions: Predictive Models for Quality Loss. J. Food Sci. 2018, 83, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Bishop, E. Indicators; Pergamon Press: New York, NY, USA, 1972. [Google Scholar]
- Gavrilenko, M.A.; Gavrilenko, N.A. Method of Producing Polymethyl Methacrylate for Solid-Phase Extraction. Worldwide Patent Application No RU2638929C1, 19 December 2017. [Google Scholar]
- Brodziak, A.; Król, J.; Litwińczuk, Z.; Zaborska, A.; Czernecki, T. Effect of storage time under home refrigeration conditions on the quality of opened drinking milk. Mljekarstvo 2017, 67, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Mobarez, S.N.; Wongkaew, N.; Simsek, M.; Baeumner, A.J.; Duerkop, A. Dipsticks with Reflectometric Readout of an NIR Dye for Determination of Biogenic Amines. Chemosensors 2020, 8, 99. [Google Scholar] [CrossRef]
- Schanzenbach, C.; Ilver, D.; Blomgren, J.; Jonasson, C.; Johansson, C.; Krozer, A.; Ye, L.; Rustas, B.-O. Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow. Sens. Actuators B Chem. 2017, 242, 637–644. [Google Scholar] [CrossRef]
Designation | (a 1 ± SD), mg/g | Immobilization Conditions | Sensor Membrane | ||||||
---|---|---|---|---|---|---|---|---|---|
C02, g/L | t, min | V, mL | m, g (Number of PMM Sheets) | A415 3 | RSD 4, % | A600 3 | RSD 4, % | ||
SM1 | 1.21 ± 0.07 | 1.0 | 1.5 | 25 | 1.1316 (25 pcs) | 1.31 | 10 | 1.29 | 20 |
SM2 | 0.82 ± 0.05 | 1.0 | 0.75 | 25 | 1.1287 (25 pcs) | 0.95 | 7 | 0.94 | 10 |
SM3 | 0.268 ± 0.006 | 0.1 | 2.5 | 25 | 1.1356 (25 pcs) | 0.30 | 9 | 0.26 | 16 |
Type of Sensor Membrane | k | C | r |
---|---|---|---|
Analytical signal: absorbance at 415 nm | |||
SM1 | −0.1225 | 2.3498 | 0.914 |
SM2 | −0.039 | 1.3751 | 0.927 |
SM3 | −0.0109 | 0.4889 | 0.858 |
Analytical signal: absorbance at 600 nm | |||
SM1 | 0.2099 | −0.7004 | 0.983 |
SM2 | 0.0982 | −0.3503 | 0.976 |
SM3 | 0.0303 | −0.0757 | 0.992 |
Analytical signal: A415/A600 | |||
SM1 | −1.7544 | 13.671 | 0.959 |
SM2 | −2.9821 | 23.48 | 0.994 |
SM3 | −1.3798 | 12.546 | 0.998 |
Type of SM | pH Determined by Potentiometry | pH Determined by Spectrophotometry | |||
---|---|---|---|---|---|
A600 | δ600 | A415/A600 | δ415/600 | ||
SM1 | 6.75 ± 0.03 | 6.73 ± 0.73 | 0.3 | 6.57 ± 0.14 | 2.6 |
6.28 ± 0.01 | 6.17 ± 0.07 | 1.7 | 6.24 ± 0.12 | 0.6 | |
5.83 ± 0.05 | 6.07 ± 0.31 | 4.1 | 6.18 ± 0.29 | 6 | |
5.35 ± 0.06 | 5.27 ± 0.37 | 1.5 | 5.31 ± 0.30 | 0.8 | |
4.89 ± 0.03 | 4.86 ± 0.31 | 0.6 | 4.65 ± 0.54 | 4.9 | |
SM2 | 6.91 ± 0.12 | 7.16 ± 0.34 | 3.5 | 6.82 ± 0.11 | 1.3 |
6.43 ± 0.20 | 6.26 ± 0.39 | 2.7 | 6.44 ± 0.22 | 0.1 | |
5.71 ± 0.07 | 5.59 ± 0.15 | 2.2 | 5.88 ± 0.17 | 2.9 | |
5.16 ± 0.17 | 5.00 ± 0.06 | 3.1 | 5.08 ± 0.22 | 1.6 | |
4.55 ± 0.16 | 4.78 ± 0.10 | 4.9 | 4.52 ± 0.08 | 0.7 | |
SM3 | 7.01 ± 0.08 | 7.04 ± 0.23 | 0.4 | 6.96 ± 0.14 | 0.8 |
6.69 ± 0.03 | 6.74 ± 0.14 | 0.8 | 6.72 ± 0.41 | 0.5 | |
6.07 ± 0.07 | 5.99 ± 0.59 | 1.4 | 6.14 ± 0.24 | 1.1 | |
5.37 ± 0.03 | 5.22 ± 0.16 | 2.8 | 5.31 ± 0.33 | 1 | |
4.78 ± 0.06 | 4.91 ± 0.23 | 2.7 | 4.79 ± 0.16 | 0.2 |
Type of SM | Range of pH | Equation | r |
---|---|---|---|
SM1 | 6.75–4.88 | TCD = − 42.059 pH + 291.6 | 0.981 |
TCD = − 13.275 pH2 + 112.38 pH − 151.85 | 0.996 | ||
SM2 | 6.91–5.16 | TCD = − 34.077 pH + 242.62 | 0.967 |
6.91–5.16 | TCD = − 15.667 pH2 + 155.03 pH − 321.02 | 0.990 | |
SM3 | Not available | Linear equation not applicable | N/A |
Type of SM | Potentiometric | Colorimetric | δ,% |
---|---|---|---|
SM1 | 6.75 ± 0.03 | 6.94 ± 0.13 | 2.9 |
6.28 ± 0.01 | 6.12 ± 0.25 | 2.6 | |
5.83 ± 0.05 | 5.70 ± 0.44 | 2.3 | |
5.35 ± 0.06 | 5.35 ± 0.21 | 0.06 | |
4.89 ± 0.03 | 4.99 ± 0.13 | 2.2 | |
SM2 | 6.91 ± 0.12 | 7.13 ± 0.30 | 3.1 |
6.43 ± 0.20 | 6.16 ± 0.22 | 4.2 | |
5.71 ± 0.07 | 5.68 ± 0.10 | 0.7 | |
5.16 ± 0.17 | 5.25 ± 0.11 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voskoboynikova, O.; Sukhanov, A.; Duerkop, A. Optical pH Sensing in Milk: A Small Puzzle of Indicator Concentrations and the Best Detection Method. Chemosensors 2021, 9, 177. https://doi.org/10.3390/chemosensors9070177
Voskoboynikova O, Sukhanov A, Duerkop A. Optical pH Sensing in Milk: A Small Puzzle of Indicator Concentrations and the Best Detection Method. Chemosensors. 2021; 9(7):177. https://doi.org/10.3390/chemosensors9070177
Chicago/Turabian StyleVoskoboynikova, Olga, Aleksey Sukhanov, and Axel Duerkop. 2021. "Optical pH Sensing in Milk: A Small Puzzle of Indicator Concentrations and the Best Detection Method" Chemosensors 9, no. 7: 177. https://doi.org/10.3390/chemosensors9070177
APA StyleVoskoboynikova, O., Sukhanov, A., & Duerkop, A. (2021). Optical pH Sensing in Milk: A Small Puzzle of Indicator Concentrations and the Best Detection Method. Chemosensors, 9(7), 177. https://doi.org/10.3390/chemosensors9070177