Electrochemical Immunosensors for Quantification of Procalcitonin: Progress and Prospects
Abstract
:1. Introduction
2. Sandwich-Type Electrochemical Immunoassay
2.1. Carbon-Based Nanointerfaces
2.2. Nanometallic and Metal Oxide-Based Interfaces
2.3. Inorganic Metallic Interfaces and Organic Framework-Based Immunosensors
2.4. Metal Complex-Based Immunosensors
2.5. Host–Guest Interfaces in Immunosensors
2.6. Quantum-Dots-Based Immunosensors
2.6.1. Other Electrochemical Detection Strategies for PCT
2.6.2. Multiplexed Sensors
2.6.3. Emerging Directions
3. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assicot, M.; Gendrel, D.; Carsin, H.; Raymond, J.; Guilbaud, J.; Bohuon, C. High Serum Procalcitonin Concentrations in Patients with Sepsis and Infection. Lancet 1993, 341, 515–518. [Google Scholar] [CrossRef]
- Russwurm, S.; Wiederhold, M.; Oberhoffer, M.; Stonans, I.; Zipfel, P.F.; Reinhart, K. Molecular Aspects and Natural Source of Procalcitonin. Clin. Chem. Lab. Med. 1999, 37, 789–797. [Google Scholar] [CrossRef]
- Wacker, C.; Prkno, A.; Brunkhorst, F.M.; Schlattmann, P. Procalcitonin as a Diagnostic Marker for Sepsis: A Systematic Review and Meta-analysis. Lancet Infect. Dis. 2013, 13, 426–435. [Google Scholar] [CrossRef]
- Samsudin, I.; Vasikaran, S.D. Clinical Utility and Measurement of Procalcitonin. Clin. Biochem. Rev. 2017, 38, 59–68. [Google Scholar] [PubMed]
- B·R·A·H·M·S. GmbH. Available online: http://www.procalcitonin.com (accessed on 28 April 2021).
- Vincenzi, B.; Fioroni, I.; Pantano, F.; Angeletti, S.; Dicuonzo, G.; Zoccoli, A.; Santini, D.; Tonini, G. Procalcitonin as diagnostic marker of infection in solid tumors patients with fever. Sci. Rep. 2016, 6, 28090. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Han, C.; Pei, S.; Yin, M.; Chen, X. Procalcitonin levels in COVID-19 patients. Int. J. Antimicrob. Agents 2020, 56, 106051. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Li, J.P.; Wang, S.P.; Chen, D.Y.; Zeng, W.; Chen, S.C.; Huang, Y.H.; Huang, J.L.; Long, W.; Li, M.; et al. Association of procalcitonin levels with the progression and prognosis of hospitalized patients with COVID-19. Int. J. Med Sci. 2020, 17, 2468. [Google Scholar] [CrossRef]
- Ahmed, S.; Jafri, L.; Hoodbhoy, Z.; Siddiqu, I. Prognostic Value of Serum Procalcitonin in COVID-19 Patients: A Systematic Review. Indian J. Crit. Care Med. 2021, 25, 77–84. [Google Scholar]
- Vanhomwegen, C.; Veliziotis, I.; Malinverni, S.; Konopnicki, D.; Dechamps, P.; Claus, M.; Roman, A.; Cotton, F.; Dauby, N. Procalcitonin accurately predicts mortality but not bacterial infection in COVID-19 patients admitted to intensive care unit. Ir. J. Med. Sci. 2021, 1–4. Available online: https://link.springer.com/article/10.1007/s11845-020-02485-z (accessed on 28 April 2021).
- Ren, R.; Fan, D.; Wu, D.; Du, Y.; Xu, K.; Ren, X.; Wei, Q.; Ju, H. Enzyme-free colorimetric immunoassay for procalcitonin based on MgFe2O4 sacrificial probe with the Prussian blue production. Sens. Actuators B Chem. 2020, 316, 128163. [Google Scholar]
- Kremmer, E.; Meyer, K.; Grässer, F.A.; Flatley, A.; Kösters, M.; Luppa, P.B.; Krämer, P.M. A New Strategy for the Development of Monoclonal Antibodies for the Determination of Human Procalcitonin in Serum Samples. Anal. Bioanal. Chem. 2012, 402, 989–995. [Google Scholar] [CrossRef]
- Felix, F.S.; Angnes, L. Electrochemical immunosensors—A powerful tool for analytical applications. Biosens. Bioelectron. 2018, 102, 470–478. [Google Scholar] [CrossRef]
- Wen, W.; Yan, X.; Zhu, C.; Du, D.; Lin, Y. Recent Advances in Electrochemical Immunosensors. Anal. Chem. 2017, 89, 138–156. [Google Scholar] [CrossRef]
- Chen, A.; Chatterjee, S. Nanomaterials Based Electrochemical Sensors for Biomedical Applications. Chem. Soc. Rev. 2013, 42, 5425–5438. [Google Scholar] [CrossRef]
- Su, W.; Wu, H.; Xu, H.; Zhang, Y.; Li, Y.; Li, X.; Fan, L. Carbon Dots: A Booming Material For Biomedical Applications. Mater. Chem. Front. 2020, 4, 821–836. [Google Scholar] [CrossRef]
- Lim, S.A.; Ahmed, M.U. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: A review. RSC Adv. 2016, 6, 24995–25014. [Google Scholar] [CrossRef]
- Holford, T.R.J.; Davis, F.; Higson, S.P.J. Recent Trends in Antibody Based Sensors. Biosen. Bioelectron. 2012, 34, 12–24. [Google Scholar] [CrossRef] [PubMed]
- La, M. Electrochemical, Electrochemiluminescent and Photoelectrochemical Immunosensors for Procalcitonin Detection: A review. Int. J. Electrochem. Sci. 2020, 15, 6436–6447. [Google Scholar] [CrossRef]
- Molinero-Fernandez, A.; Lopez, M.Á.; Escarpa, A. An on-chip microfluidic-based electrochemical magneto-immunoassay for the determination of procalcitonin in plasma obtained from sepsis diagnosed preterm neonates. Analyst 2020, 145, 5004–5010. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, H.Y.; Wang, L.S.; Wang, J.F. Electrochemical Immunoassay For Procalcitonin Antigen Detection Based On Signal Amplification Strategy Of Multiple Nanocomposites. Biosens. Bioelectron. 2014, 51, 310–316. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Zhou, X.; Zhang, L. C60 Carboxyfullerene-Based Functionalised Nanohybrids as Signal-Amplifying Tags for the Ultrasensitive Electrochemical Detection of Procalcitonin. Clin. Biochem. 2015, 48, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xiang, G.; Yuan, R.; Chen, X.; Luo, F.; Jiang, D.; Huang, S.; Li, Y.; Pu, X. Procalcitonin Sensitive Detection Based on Graphene–Gold Nanocomposite Film Sensor Platform and Single-Walled Carbon Nanohorns/Hollow Pt Chains Complex as Signal Tags. Biosens. Bioelectron. 2014, 60, 210–217. [Google Scholar] [CrossRef]
- Liu, F.; Xiang, G.; Chen, X.; Luo, F.; Jiang, D.; Huang, S.; Li, Y.; Pu, X. A Novel Strategy of Procalcitonin Detection Based on Multi-Nanomaterials Of Single-Walled Carbon Nanohorns–Hollow Pt nanospheres/PAMAM as Signal Tags. RSC Adv. 2014, 4, 13934–13940. [Google Scholar] [CrossRef]
- Fang, Y.; Hu, Q.; Yu, X.; Wang, L. Ultrasensitive Electrochemical Immunosensor For Procalcitonin With Signal Enhancement Based On Zinc Nanoparticles Functionalized Ordered Mesoporous Carbon-Silica Nanocomposites. Sens. Actuators B 2018, 258, 238–245. [Google Scholar] [CrossRef]
- Liu, P.; Li, C.; Zhang, R.; Tang, Q.; Wei, J.; Lu, Y.; Shen, P. An Ultrasensitive Electrochemical Immunosensor for Procalcitonin Detection Based on the Gold Nanoparticles-Enhanced Tyramide Signal Amplification Strategy. Biosen. Bioelectron. 2019, 126, 543–550. [Google Scholar] [CrossRef]
- Liu, A.; Wang, X. Amperometric Immunosensor of Procalcitonin Based on Amplification Strategy of Ferrocene-Modified Gold nanoparticles. Int. J. Electrochem. Sci. 2015, 10, 9342–9350. [Google Scholar]
- Yang, Z.-H.; Ren, S.; Zhuo, Y.; Yuan, R.; Chai, Y.-Q. Cu/Mn Double-Doped CeO2 Nanocomposites as Signal Tags and Signal Amplifiers for Sensitive Electrochemical Detection of Procalcitonin. Anal. Chem. 2017, 89, 13349–13356. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Quan, L.; Yu, X.; Wang, L. Quantitative Detection of Procalcitonin Using an Electrochemical Immunosensor Based On MoO3/Au@rGO Nanocomposites. Analyst 2019, 144, 6968–6974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ren, X.; Fan, D.; Kuang, X.; Wang, H.; Wu, D.; Wei, Q. Electrochemical Procalcitonin Immunoassay Based On Au@Ag Heterojunction Nanorods as Labels And CeO2-CuO Nanorods As Enhancer. Sens. Actuators B Chem. 2019, 297, 126800. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Y.; Zhang, C.; Zhang, S.; Jia, Y.; Dong, Y. An Enzyme-Free Immunosensor for Sensitive Determination of Procalcitonin Using NiFe PBA Nanocubes@TB as the Sensing Matrix. Anal. Chim. Acta 2020, 1097, 169–175. [Google Scholar] [CrossRef]
- Ding, H.; Yang, L.; Jia, H.; Fan, D.; Zhang, Y.; Sun, X.; Wei, Q.; Ju, H. Label-Free Electrochemical Immunosensor With Palladium Nanoparticles Functionalized MoS2/NiCo Heterostructures For Sensitive Procalcitonin Detection. Sens. Actuators B: Chem. 2020, 312, 127980. [Google Scholar] [CrossRef]
- Yang, Z.; Zhuo, Y.; Yuan, R.; Chai, Y. Electrochemical Activity and Electrocatalytic Property of Cobalt Phthalocyanine Nanoparticles-Based Immunosensor for Sensitive Detection of Procalcitonin. Sens. Actuators B 2016, 227, 212–219. [Google Scholar] [CrossRef]
- Shen, W.J.; Zhuo, Y.; Chai, Y.Q.; Yang, Z.H.; Han, J.; Yuan, R. Enzyme-Free Electrochemical Immunosensor Based On Host-Guest Nanonets Catalyzing Amplification For Procalcitonin Detection. ACS Appl. Mater. Interfaces 2015, 7, 4127–4134. [Google Scholar] [CrossRef] [PubMed]
- Ghrera, A.S. Quantum Dot Modified Interface for Electrochemical Immunosensing of Procalcitonin for the Detection of Urinary Tract Infection. Anal. Chim. Acta 2019, 1056, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, X.; Miao, J.; Liu, L.; Huang, X.; Wei, Q.; Cao, W. A dual-mode label-free electrochemical immunosensor for ultrasensitive detection of procalcitonin based on g-C3N4-NiCo2S4-CNTs-Ag NPs. Analyst 2021, 146, 3169–3176. [Google Scholar] [CrossRef] [PubMed]
- Medetalibeyoglu, H.; Beytur, M.; Akyıldırım, O.; Atar, N.; Yola, M.L. Validated electrochemical immunosensor for ultra-sensitive procalcitonin detection: Carbon electrode modified with gold nanoparticles functionalized sulfur doped MXene as sensor platform and carboxylated graphitic carbon nitride as signal amplification. Sens. Actuators B Chem. 2020, 319, 128195. [Google Scholar] [CrossRef]
- Yang, L.; Xue, J.; Jia, Y.; Zhang, Y.; Wu, D.; Ma, H.; Wei, Q.; Ju, H. Construction of well-ordered electrochemiluminescence sensing interface using peptide-based specific antibody immobilizer and N-(aminobutyl)-N-(ethylisoluminol) functionalized ferritin as signal indicator for procalcitonin analysis. Biosens. Bioelectron. 2019, 142, 111562. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Yang, L.; Ren, Y.; Ren, X.; Fan, D.; Xu, K.; Wang, H.; Li, Y.; Ju, H.; Wei, Q. A signal-off electrochemical sensing platform based on Fe3S4-Pd and pineal mesoporous bioactive glass for procalcitonin detection. Sens. Actuators B Chem. 2020, 320, 128324. [Google Scholar] [CrossRef]
- Feng, Y.G.; Wang, X.Y.; Wang, Z.W.; Wang, A.J.; Mei, L.P.; Luo, X.; Feng, J.J. A label-free electrochemical immunosensor based on encapsulated signal molecules in mesoporous silica-coated gold nanorods for ultrasensitive assay of procalcitonin. Bioelectrochemistry 2021, 140, 107753. [Google Scholar] [CrossRef]
- Wang, X.Y.; Feng, Y.G.; Wang, A.J.; Mei, L.P.; Luo, X.; Xue, Y.; Feng, J.J. Facile construction of ratiometric electrochemical immunosensor using hierarchical PtCoIr nanowires and porous SiO2@Ag nanoparticles for accurate detection of septicemia biomarker. Bioelectrochemistry 2021, 140, 107802. [Google Scholar] [CrossRef]
- Xu, R.; Feng, R.; Wei, D.; Yan, T.; Zhang, Y.; Cao, W.; Fan, D.; Wei, Q.; Ju, H. A novel photoelectrochemical singal amplification assay for procalcitonin detection based on ZnxBi2S3+ x sensitized NiTiO3 matrix. Sens. Actuators B Chem. 2019, 301, 127099. [Google Scholar] [CrossRef]
- Leng, D.; Li, J.; Xu, R.; Liu, L.; Liu, X.; Fan, D.; Wang, H.; Wei, Q.; Ju, H. THCH as electron donor in controlled-release system for procalcitonin analysis based on Bi2Sn2O7 photoanode. Sens. Actuators B Chem. 2020, 321, 128509. [Google Scholar] [CrossRef]
- Miao, J.; Du, K.; Li, X.; Xu, X.; Dong, X.; Fang, J.; Cao, W.; Wei, Q. Ratiometric electrochemical immunosensor for the detection of procalcitonin based on the ratios of SiO2-Fc–COOH–Au and UiO-66-TB complexes. Biosens. Bioelectron. 2020, 171, 112713. [Google Scholar] [CrossRef] [PubMed]
- Park, J.P.; Park, C.Y.; Park, A.Y.; Ryu, M.Y. Evolutionary identification of affinity peptides for the detection of sepsis biomarker procalcitonin. RSC Adv. 2015, 5, 90531. [Google Scholar] [CrossRef]
- Lim, J.M.; Ryu, M.Y.; Kim, J.H.; Cho, C.H.; Park, T.J.; Park, J.P. An electrochemical biosensor for detection of the sepsis-related biomarker procalcitonin. RSC Adv. 2017, 7, 36562. [Google Scholar] [CrossRef] [Green Version]
- Lisi, F.; Ariotti, N.; Bakthavathsalam, P.; Benedetti, T.; Tilley, R.D.; Gooding, J.J. The use of a personal glucose meter for detecting procalcitonin through glucose encapsulated within liposomes. Analyst 2019, 144, 6225. [Google Scholar]
- Panneer Selvam, A.; Prasad, S. Companion and point-of-care sensor system for rapid multiplexed detection of a panel of infectious disease markers. SLAS TECHNOL. Transl. Life Sci. Innov. 2017, 22, 338. [Google Scholar]
- Zupančič, U.; Jolly, P.; Estrela, P.; Moschou, D.; Ingber, D.E. Graphene Enabled Low-Noise Surface Chemistry for Multiplexed Sepsis Biomarker Detection in Whole Blood. Adv. Funct. Mater. 2021, 31, 2010638. [Google Scholar] [CrossRef]
- Xianyu, Y.; Wu, J.; Chen, Y.; Zheng, W.; Xie, M.; Jiang, X. Controllable Assembly of Enzymes for Multiplexed Lab-on-a-Chip Bioassays with a Tunable Detection Range. Angew. Chem. Int. Ed. 2018, 57, 7503. [Google Scholar] [CrossRef] [PubMed]
- Tanak, A.S.; Jagannath, B.; Tamrakar, Y.; Muthukumar, S.; Prasad, S. Non-faradaic electrochemical impedimetric profiling of procalcitonin and C-reactive protein as a dual marker biosensor for early sepsis detection. Anal. Chim. Acta 2019, 3, 100029. [Google Scholar] [CrossRef]
- Molinero-Fernández, Á.; Moreno-Guzmán, M.; López, M.Á.; Escarpa, A. Magnetic Bead-Based Electrochemical Immunoassays On-Drop and On-Chip for Procalcitonin Determination: Disposable Tools for Clinical Sepsis Diagnosis. Biosensors 2020, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Boonkaew, S.; Jang, I.; Noviana, E.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers. Sens. Actuators B Chem. 2021, 330, 129336. [Google Scholar] [CrossRef]
- Berger, J.; Valera, E.; Jankelow, A.; Garcia, C.; Akhand, M.; Heredia, J.; Ghonge, T.; Liu, C.; Font-Bartumeus, V.; Oshana, G.; et al. Simultaneous electrical detection of IL-6 and PCT using a microfluidic biochip platform. Biomed. Microdevices 2020, 22, 36. [Google Scholar] [CrossRef] [PubMed]
- Teggert, A.; Datta, H.; McIntosh, S.; Warden, B.; Bateson, S.; Abugchem, F.; Ali, Z. Portable, low cost and sensitive cavity enhanced absorption (CEA) detection. Analyst 2021, 146, 196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, J.; Gui, L. Development of a Graphene-Based Aptamer Sensor for Electrochemical Detection of Serum ECP Levels. Int. J. Electrochem. Sci. 2017, 12, 9502–9511. [Google Scholar] [CrossRef]
- Demertzis, N. Development of a Multiplex Sensing Platform for the Accurate and Rapid Diagnosis of Sepsis. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2020. [Google Scholar]
Method | PCT Immunoelectrode (Signal Amplifier/Signal Tag) | Technique | Tag-Analytes | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|---|---|
Sandwich-type | GCE/Graphene sheets/MWCNT/Chitosan/Glutaraldehyde/Ab1/Bovine serum albumin/PCT/MCM/Thionine/AuNPs/HRP-Ab2 | DPV | H2O2 | 0.01 to 350 ng/mL | 0.5 pg/mL | [21] |
Sandwich-type | GCE/MWCNT/AuNPs/Ab1/PCT/Glucose Oxidase@anti-PCT Ab2-PtNPs-Fc-C60 | DPV | H2O2 | 0.01 to 10 ng/mL | 6 pg/mL | [22] |
Sandwich-type | GCE/rGO–Au/Ab1/PTC/SWCNHs/HPtCs/HRP/Thionine–Ab2 | DPV | H2O2 | 1 pg/mL to 20 ng/mL | 0.43 pg/mL | [23] |
Label-free | Au/SWCNHs–PtNPs/PAMAM/Thionine–Ab1/BSA/PCT | DPV | H2O2 | 10 pg/mL to 20 ng/mL | 1.74 pg/mL | [24] |
Sandwich-type | GCE/Graphene oxide/Chitosan-Ab1/PCT/Zn-OMCSi-Ab2 | DPV | Zinc | 0.05 pg/mL to 80 ng/mL | 0.013 pg/mL | [25] |
Sandwich-type | GCE/rGO-AuNPs/T-HRP/Ab1/PCT/SA-HRP/Ab2 | Amp i-t | H2O2 | 0.05 to 100 ng/mL | 0.1 pg/mL | [26] |
Sandwich-type | Au/PCT-Ab1/PCT/Fc-AuNPs/PCT-Ab2 | DPV | -- | 1.5 pg/mL to 50 ng/mL | 0.8 pg/mL | [27] |
Sandwich-type | GCE/AuNP/Ab1/PCT/CuMn-CeO2/Ab2 | DPV | H2O2 | 0.1 pg/mL to 36.0 ng/mL | 0.03 pg/mL | [28] |
Sandwich-type | GCE/AuNP/Ab1/PCT/MoO3/Au@rGO-Ab2 | Amp i-t | H2O2 | 0.01 pg/mL to 10 ng/mL | 0.002 pg/mL | [29] |
Sandwich-type | GCE/CeO2-CuO-Au/Ab/PCT/Au@Ag-Thionine-Ab2 | SWV | -- | 0.5 pg/mL to 50 ng/mL | 0.17 pg/mL | [30] |
Enzyme-free | GCE/NiFe PBA nanocubes@Toluidene Blue/GA/PCT Ab/BSA/PCT | DPV | -- | 0.001 to 25 ng/mL | 3 × 10−4 ng/mL | [31] |
Label-free | NiCo-MOF/MoS2@PdNPs/CS/PCT-Ab | Amp i-t | H2O2 | 0.001 to 50 ng/mL | 0.36 pg/mL | [32] |
Sandwich-type | GCE/AuNP/Ab1/BSA/Ag/nanoCoPC-MWCNTs/ChOx/Ab2 | DPV | H2O2 | 0.01 to 100 ng/mL | 1.23 pg/mL | [33] |
Enzyme-free | GCE/Fc-Fc/β-CD/PAMAM−AuNP/Ab2 | DPV | Ascorbic acid | 1.80 pg/mL to 500 ng/mL | 0.36 pg/mL | [34] |
Sandwich-type | AS-ITO/CdSeZnS-QD/PCT-Ab | CV (in [Fe(CN)6]3− | -- | 1 ng/mL to 10 μg/mL | 0.21 ng/mL | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nellaiappan, S.; Mandali, P.K.; Prabakaran, A.; Krishnan, U.M. Electrochemical Immunosensors for Quantification of Procalcitonin: Progress and Prospects. Chemosensors 2021, 9, 182. https://doi.org/10.3390/chemosensors9070182
Nellaiappan S, Mandali PK, Prabakaran A, Krishnan UM. Electrochemical Immunosensors for Quantification of Procalcitonin: Progress and Prospects. Chemosensors. 2021; 9(7):182. https://doi.org/10.3390/chemosensors9070182
Chicago/Turabian StyleNellaiappan, Subramanian, Pavan Kumar Mandali, Amrish Prabakaran, and Uma Maheswari Krishnan. 2021. "Electrochemical Immunosensors for Quantification of Procalcitonin: Progress and Prospects" Chemosensors 9, no. 7: 182. https://doi.org/10.3390/chemosensors9070182
APA StyleNellaiappan, S., Mandali, P. K., Prabakaran, A., & Krishnan, U. M. (2021). Electrochemical Immunosensors for Quantification of Procalcitonin: Progress and Prospects. Chemosensors, 9(7), 182. https://doi.org/10.3390/chemosensors9070182