Decode the Stable Cell Communications Based on Neuropeptide-Receptors Network in 36746 Tumor Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Cancer-Related scRNAseq Datasets
2.2. The Pan-Cancer Expression Profile for Neuropeptide and Receptor at the Single-Cell Level
2.3. The Stable Cell Communication through Active Expressed Neuropeptides and Receptors at the Single-Cell Level
2.4. Mutational and Survival Analysis for the 39 Stably Expressed Neuropeptides and Receptors
2.5. Cell State and t-Distributed Stochastic Neighbour Embedding Analysis
3. Results
3.1. The Workflow of Constructing Neuropeptide and Receptor-Based Cell Communication Network
3.2. The Consistent Neuropeptide Initiated Cell-to-Cell Communications across Multiple Cancers
3.3. The 39 Neuropeptides and Receptors Connected over Half Cell in Each Dataset
3.4. Survival and Mutational Analysis for the 39 Top-Ranked Genes
3.5. Neuroppeptides and Receptors-Based Cell Status
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Liu, D.; Yang, Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol. 2020, 10, 200004. [Google Scholar] [CrossRef]
- Nusbaum, M.P.; Blitz, D.M.; Marder, E. Functional consequences of neuropeptide and small-molecule co-transmission. Nat. Rev. Neurosci. 2017, 18, 389–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaffer, M.; Beiter, T.; Becker, H.D.; Hunt, T.K. Neuropeptides: Mediators of inflammation and tissue repair? Arch. Surg. 1998, 133, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Woll, P.J. Neuropeptide growth factors and cancer. Br. J. Cancer 1991, 63, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Jaggi, M.; Prasad, S.; Singh, A.T.; Praveen, R.; Dutt, S.; Mathur, A.; Sharma, R.; Gupta, N.; Ahuja, R.; Mukherjee, R.; et al. Anticancer activity of a peptide combination in gastrointestinal cancers targeting multiple neuropeptide receptors. Investig. New Drugs 2008, 26, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Olbrecht, S.; Boeckx, B.; Vos, H.; Laoui, D.; Etlioglu, E.; Wauters, E.; Pomella, V.; Verbandt, S.; Busschaert, P.; et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 2020, 30, 745–762. [Google Scholar] [CrossRef]
- Yuan, H.; Yan, M.; Zhang, G.; Liu, W.; Deng, C.; Liao, G.; Xu, L.; Luo, T.; Yan, H.; Long, Z.; et al. CancerSEA: A cancer single-cell state atlas. Nucleic Acids Res. 2019, 47, D900–D908. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Wang, T.; Liu, Q.; Cummins, S. Copy number alteration of neuropeptides and receptors in multiple cancers. Sci. Rep. 2017, 7, 4598. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Yin, S.; Jang, R.; Wang, J.; Xue, Z.; Xu, T. NeuroPep: A comprehensive resource of neuropeptides. Database 2015, 2015, bav038. [Google Scholar] [CrossRef] [Green Version]
- Jekely, G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 8702–8707. [Google Scholar] [CrossRef] [Green Version]
- Mirabeau, O.; Joly, J.S. Molecular evolution of peptidergic signaling systems in bilaterians. Proc. Natl. Acad. Sci. USA 2013, 110, E2028–E2037. [Google Scholar] [CrossRef] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Zhao, M. ONGene: A literature-based database for human oncogenes. J. Genet Genom. 2017, 44, 119–121. [Google Scholar] [CrossRef]
- Zhao, M.; Kim, P.; Mitra, R.; Zhao, J.; Zhao, Z. TSGene 2.0: An updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2016, 44, D1023–D1031. [Google Scholar] [CrossRef] [PubMed]
- Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 2011, 27, 431–432. [Google Scholar] [CrossRef] [Green Version]
- Hanzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 2013, 14, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satija, R.; Farrell, J.A.; Gennert, D.; Schier, A.F.; Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 2015, 33, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Tirosh, I.; Venteicher, A.S.; Hebert, C.; Escalante, L.E.; Patel, A.P.; Yizhak, K.; Fisher, J.M.; Rodman, C.; Mount, C.; Filbin, M.G.; et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 2016, 539, 309–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, P.; Zhao, B.; Zimmerman, D.L.; Belmont, A.S. Stable and reproducible transgene expression independent of proliferative or differentiated state using BAC TG-EMBED. Gene Ther. 2018, 25, 376–391. [Google Scholar] [CrossRef]
- Hennig, B.P.; Velten, L.; Racke, I.; Tu, C.S.; Thoms, M.; Rybin, V.; Besir, H.; Remans, K.; Steinmetz, L.M. Large-Scale Low-Cost NGS Library Preparation Using a Robust Tn5 Purification and Tagmentation Protocol. G3 Genes Genomes Genet. 2018, 8, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Ramilowski, J.A.; Goldberg, T.; Harshbarger, J.; Kloppman, E.; Lizio, M.; Satagopam, V.P.; Itoh, M.; Kawaji, H.; Carninci, P.; Rost, B.; et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat. Commun. 2015, 6, 7866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Ghazanfar, S.; Strbenac, D.; Wang, A.; Patrick, E.; Lin, D.M.; Speed, T.; Yang, J.Y.H.; Yang, P. Evaluating stably expressed genes in single cells. Gigascience 2019, 8, giz106. [Google Scholar] [CrossRef] [Green Version]
- Bickerton, R.K.; Buckley, J.P. Evidence for a Central Mechanism in Angiotensin Induced Hypertension. Exp. Biol. Med. 1961, 106, 834–836. [Google Scholar] [CrossRef]
- Kostakou, P.M.; Kouris, N.T.; Kostopoulos, V.S.; Damaskos, D.S.; Olympios, C.D. Cardio-oncology: A new and developing sector of research and therapy in the field of cardiology. Heart Fail. Rev. 2019, 24, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.M.J.; Green, P.; Tapoulal, N.; Lewandowski, A.J.; Leeson, P.; Herring, N. The Role of Neuropeptide Y in Cardiovascular Health and Disease. Front. Physiol. 2018, 9, 1281. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.C.; White, K.I.; Zhou, Q.; Pfuetzner, R.A.; Choi, U.B.; Sudhof, T.C.; Brunger, A.T. Structures of neurexophilin-neurexin complexes reveal a regulatory mechanism of alternative splicing. EMBO J. 2019, 38, e101603. [Google Scholar] [CrossRef]
- Kelai, S.; Maussion, G.; Noble, F.; Boni, C.; Ramoz, N.; Moalic, J.M.; Peuchmaur, M.; Gorwood, P.; Simonneau, M. Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction. Neuroreport 2008, 19, 751–755. [Google Scholar] [CrossRef] [Green Version]
- Quinn, D.P.; Kolar, A.; Wigerius, M.; Gomm-Kolisko, R.N.; Atwi, H.; Fawcett, J.P.; Krueger, S.R. Pan-neurexin perturbation results in compromised synapse stability and a reduction in readily releasable synaptic vesicle pool size. Sci. Rep. 2017, 7, 42920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, M. Decode the Stable Cell Communications Based on Neuropeptide-Receptors Network in 36746 Tumor Cells. Biomedicines 2022, 10, 14. https://doi.org/10.3390/biomedicines10010014
Liu Y, Zhao M. Decode the Stable Cell Communications Based on Neuropeptide-Receptors Network in 36746 Tumor Cells. Biomedicines. 2022; 10(1):14. https://doi.org/10.3390/biomedicines10010014
Chicago/Turabian StyleLiu, Yining, and Min Zhao. 2022. "Decode the Stable Cell Communications Based on Neuropeptide-Receptors Network in 36746 Tumor Cells" Biomedicines 10, no. 1: 14. https://doi.org/10.3390/biomedicines10010014
APA StyleLiu, Y., & Zhao, M. (2022). Decode the Stable Cell Communications Based on Neuropeptide-Receptors Network in 36746 Tumor Cells. Biomedicines, 10(1), 14. https://doi.org/10.3390/biomedicines10010014