Comparison of Short-Term Surgical Outcomes According to Immediately Postoperative Serum Glucose Level in Non-Diabetic Pancreatic Resection Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Outline
2.2. Surgical Procedures for Major Pancreatic Surgery
2.3. Definition and Management of Hyperglycemia
2.4. Definitions of Variables and Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Primary Outcomes
3.2. Risk Factor Analysis for Complications
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van den Berghe, G.; Wouters, P.; Weekers, F.; Verwaest, C.; Bruyninckx, F.; Schetz, M.; Vlasselaers, D.; Ferdinande, P.; Lauwers, P.; Bouillon, R. Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 2001, 345, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Finfer, S.; Chittock, D.R.; Su, S.Y.; Blair, D.; Foster, D.; Dhingra, V.; Bellomo, R.; Cook, D.; Dodek, P.; Henderson, W.R.; et al. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009, 360, 1283–1297. [Google Scholar] [PubMed]
- Jacobi, J.; Bircher, N.; Krinsley, J.; Agus, M.; Braithwaite, S.S.; Deutschman, C.; Freire, A.X.; Geehan, D.; Kohl, B.; Nasraway, S.A.; et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit. Care Med. 2012, 40, 3251–3276. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.Y.; Lin, M.Z.; Wen, J.P.; Li, X.J.; Shi, X.L.; Zhang, H.J.; Chen, N.; Li, X.Y.; Yang, S.Y.; Chen, G. Correlation of early postoperative blood glucose levels with postoperative complications, hospital costs, and length of hospital stay in patients with gastrointestinal malignancies. Endocrine 2015, 48, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.; Khalpey, Z.; Lipsitz, S.; Steinberg, J.; Panizales, M.T.; Zinner, M.; Rogers, S.O. Relationship of perioperative hyperglycemia and postoperative infections in patients who undergo general and vascular surgery. Ann. Surg. 2008, 248, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Ata, A.; Lee, J.; Bestle, S.L.; Desemone, J.; Stain, S.C. Postoperative hyperglycemia and surgical site infection in general surgery patients. Arch. Surg. 2010, 145, 858–864. [Google Scholar] [CrossRef]
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef]
- Ambiru, S.; Kato, A.; Kimura, F.; Shimizu, H.; Yoshidome, H.; Otsuka, M.; Miyazaki, M. Poor postoperative blood glucose control increases surgical site infections after surgery for hepato-biliary-pancreatic cancer: A prospective study in a high-volume institute in Japan. J. Hosp. Infect. 2008, 68, 230–233. [Google Scholar] [CrossRef]
- Eshuis, W.J.; Hermanides, J.; van Dalen, J.W.; van Samkar, G.; Busch, O.R.; van Gulik, T.M.; DeVries, J.H.; Hoekstra, J.B.; Gouma, D.J. Early postoperative hyperglycemia is associated with postoperative complications after pancreatoduodenectomy. Ann. Surg. 2011, 253, 739–744. [Google Scholar] [CrossRef]
- Okabayashi, T.; Shima, Y.; Sumiyoshi, T.; Kozuki, A.; Tokumaru, T.; Iiyama, T.; Sugimoto, T.; Kobayashi, M.; Yokoyama, M.; Hanazaki, K. Intensive versus intermediate glucose control in surgical intensive care unit patients. Diabetes Care 2014, 37, 1516–1524. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, T.; Ikemoto, T.; Morine, Y.; Imura, S.; Saito, Y.; Yamada, S.; Miyazaki, K.; Takehara, Y.; Shimada, M. Impact of using a perioperative artificial endocrine pancreas in pancreatic resection. Ann. Gastroenterol. Surg. 2020, 4, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Akabori, H.; Tani, M.; Kitamura, N.; Maehira, H.; Imashuku, Y.; Tsujita, Y.; Shimizu, T.; Kitagawa, H.; Eguchi, Y. Perioperative tight glycemic control using artificial pancreas decreases infectious complications via suppression of inflammatory cytokines in patients who underwent pancreaticoduodenectomy: A prospective, non-randomized clinical trial. Am. J. Surg. 2020, 220, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Thomas, D.J. The management of diabetes during surgery. Br. J. Anaesth. 1979, 51, 693–710. [Google Scholar] [CrossRef] [PubMed]
- Duggan, E.W.; Carlson, K.; Umpierrez, G.E. Perioperative Hyperglycemia Management: An Update. Anesthesiology 2017, 126, 547–560. [Google Scholar] [CrossRef]
- Gouma, D.J.; Nieveen van Dijkum, E.J.; Obertop, H. The standard diagnostic work-up and surgical treatment of pancreatic head tumours. Eur. J. Surg. Oncol. 1999, 25, 113–123. [Google Scholar] [CrossRef]
- van Geenen, R.C.; ten Kate, F.J.; de Wit, L.T.; van Gulik, T.M.; Obertop, H.; Gouma, D.J. Segmental resection and wedge excision of the portal or superior mesenteric vein during pancreatoduodenectomy. Surgery 2001, 129, 158–163. [Google Scholar] [CrossRef]
- Strasberg, S.M.; Drebin, J.A.; Linehan, D. Radical antegrade modular pancreatosplenectomy. Surgery 2003, 133, 521–527. [Google Scholar] [CrossRef]
- Chun, Y.S. Role of Radical Antegrade Modular Pancreatosplenectomy (RAMPS) and Pancreatic Cancer. Ann. Surg. Oncol. 2018, 25, 46–50. [Google Scholar] [CrossRef]
- American Diabetes Association. (2) Classification and diagnosis of diabetes. Diabetes Care 2015, 38 (Suppl. 1), S8–S16. [Google Scholar] [CrossRef]
- International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009, 32, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Colagiuri, S.; Lee, C.M.; Wong, T.Y.; Balkau, B.; Shaw, J.E.; Borch-Johnsen, K. Glycemic thresholds for diabetes-specific retinopathy: Implications for diagnostic criteria for diabetes. Diabetes Care 2011, 34, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.A.M.; Abdulla, K.S.; Abdulkarim, Q.H.; Rahim, F.H. The outcomes and complications of pancreaticoduodenectomy (Whipple procedure): Cross sectional study. Int. J. Surg. 2018, 52, 383–387. [Google Scholar] [CrossRef]
- van Hilst, J.; de Rooij, T.; Bosscha, K.; Brinkman, D.J.; van Dieren, S.; Dijkgraaf, M.G.; Gerhards, M.F.; de Hingh, I.H.; Karsten, T.M.; Lips, D.J.; et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): A multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol. Hepatol. 2019, 4, 199–207. [Google Scholar] [CrossRef]
- Nickel, F.; Haney, C.M.; Kowalewski, K.F.; Probst, P.; Limen, E.F.; Kalkum, E.; Diener, M.K.; Strobel, O.; Müller-Stich, B.P.; Hackert, T. Laparoscopic Versus Open Pancreaticoduodenectomy: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann. Surg. 2020, 271, 54–66. [Google Scholar] [CrossRef]
- Kim, Y.J.; Shin, S.H.; Han, I.W.; Ryu, Y.; Kim, N.; Choi, D.W.; Heo, J.S. Clinical outcomes of pancreaticoduodenectomy for pancreatic ductal adenocarcinoma depending on preservation or resection of pylorus. Ann. Hepatobiliary Pancreat. Surg. 2020, 24, 269–276. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Pecorelli, N.; Carrara, G.; De Cobelli, F.; Cristel, G.; Damascelli, A.; Balzano, G.; Beretta, L.; Braga, M. Effect of sarcopenia and visceral obesity on mortality and pancreatic fistula following pancreatic cancer surgery. Br. J. Surg. 2016, 103, 434–442. [Google Scholar] [CrossRef]
- Sugimoto, K.; Tabara, Y.; Ikegami, H.; Takata, Y.; Kamide, K.; Ikezoe, T.; Kiyoshige, E.; Makutani, Y.; Onuma, H.; Gondo, Y.; et al. Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass: The Multicenter Study for Clarifying Evidence for Sarcopenia in Patients with Diabetes Mellitus. J. Diabetes Investig. 2019, 10, 1471–1479. [Google Scholar] [CrossRef] [Green Version]
- Umegaki, H.; Makino, T.; Uemura, K.; Shimada, H.; Hayashi, T.; Cheng, X.W.; Kuzuya, M. The Associations among Insulin Resistance, Hyperglycemia, Physical Performance, Diabetes Mellitus, and Cognitive Function in Relatively Healthy Older Adults with Subtle Cognitive Dysfunction. Front. Aging Neurosci. 2017, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Barberan-Garcia, A.; Ubré, M.; Roca, J.; Lacy, A.M.; Burgos, F.; Risco, R.; Momblán, D.; Balust, J.; Blanco, I.; Martínez-Pallí, G. Personalised Prehabilitation in High-risk Patients Undergoing Elective Major Abdominal Surgery: A Randomized Blinded Controlled Trial. Ann. Surg. 2018, 267, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Carli, F.; Lee, L.; Charlebois, P.; Stein, B.; Liberman, A.S.; Kaneva, P.; Augustin, B.; Wongyingsinn, M.; Gamsa, A.; et al. Impact of a trimodal prehabilitation program on functional recovery after colorectal cancer surgery: A pilot study. Surg. Endosc. 2013, 27, 1072–1082. [Google Scholar] [CrossRef]
- Glance, L.G.; Osler, T.M.; Neuman, M.D. Redesigning surgical decision making for high-risk patients. N. Engl. J. Med. 2014, 370, 1379–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | All Patients | Propensity-Score-Matched Patients | ||||
---|---|---|---|---|---|---|
SGL < 200 (n = 1691) | SGL ≥ 200 (n = 568) | p-Value | SGL < 200 (n = 568) | SGL ≥ 200 (n = 568) | p-Value | |
Sex (male) | 969 (57.3) | 276 (48.6) | <0.001 | 276 (48.6) | 276 (48.6) | 1.000 |
Age (years) | 59.58 ± 12.62 | 63.36 ± 11.44 | <0.001 | 61.62 ± 12.19 | 63.36 ± 11.44 | 0.013 |
Body mass index | 23.26 ± 3.17 | 23.36 ± 3.31 | 0.553 | 23.21 ± 3.13 | 23.36 ± 3.31 | 0.430 |
Hypertension | 493 (29.2) | 207 (36.4) | 0.001 | 207 (36.4) | 207 (36.4) | 1.000 |
Chronic kidney disease | 13 (0.8) | 5 (0.9) | 0.787 | 2 (0.4) | 5 (0.9) | 0.452 |
Pre op. ASA score | 0.128 | 0.034 | ||||
I | 522 (31.1) | 160 (28.2) | 180 (31.7) | 160 (28.2) | ||
II | 1068 (63.5) | 366 (64.4) | 367 (64.6) | 366 (64.4) | ||
III | 89 (5.3) | 41 (7.2) | 20 (3.5) | 41 (7.2) | ||
IV | 1 (0.1) | 1 (0.2) | 0 (0.0) | 1 (0.2) | ||
V | 1 (0.1) | 0 (0.0) | 1 (0.2) | 0 (0.0) | ||
Pre op. lab findings | ||||||
Albumin | 4.04 ± 0.58 | 4.04 ± 0.51 | 0.831 | 4.02 ± 0.47 | 4.04 ± 0.51 | 0.658 |
Serum glucose level | 116.06 ± 40.9 | 115.81 ± 37.1 | 0.894 | 112.24 ± 38.3 | 115.81 ± 37.1 | 0.793 |
HbA1c | 5.61 ± 0.89 | 5.86 ± 0.99 | 0.008 | 5.56 ± 0.74 | 6.04 ± 1.09 | <0.001 |
CEA | 2.48 ± 4.06 | 2.76 ± 5.68 | 0.379 | 2.69 ± 5.68 | 2.76 ± 5.68 | 0.467 |
CA 19-9 | 327.81 ± 1156.8 | 318.21 ± 1085.8 | 0.863 | 328.28 ± 1014.8 | 318.21 ± 1085.8 | 0.730 |
Neoadjuvant CTx | 17 (1.0) | 10 (1.8) | 0.226 | 4 (0.7) | 10 (1.8) | 0.134 |
Operation type | 0.046 | 1.000 | ||||
PD | 1262 (74.6) | 399 (70.2) | 399 (70.2) | 399 (70.2) | ||
DP | 429 (25.4) | 169 (29.8) | 169 (29.8) | 169 (29.8) |
Characteristics | All Patients | Propensity-Score-Matched Patients | ||||
---|---|---|---|---|---|---|
SGL < 200 (n = 1691) | SGL ≥ 200 (n = 568) | p-Value | SGL < 200 (n = 568) | SGL ≥ 200 (n = 568) | p-Value | |
EBL | 478.57 ± 510.1 | 453.95 ± 354.3 | 0.205 | 414.00 ± 283.29 | 453.95 ± 354.3 | 0.135 |
Op. duration | 294.82 ± 92.8 | 289.53 ± 95.1 | 0.249 | 273.15 ± 84.9 | 289.53 ± 95.1 | 0.526 |
Hospital stay | 15.30 ± 22.07 | 16.10 ± 11.99 | 0.825 | 12.93 ± 7.01 | 16.10 ± 11.99 | <0.001 |
Tumor type | 0.658 | 0.394 | ||||
PDAC | 1100 (65.1) | 357 (62.9) | 336 (59.2) | 357 (62.9) | ||
PNET | 81 (4.8) | 32 (5.6) | 40 (7.0) | 32 (5.6) | ||
IPMN | 166 (9.8) | 63 (11.1) | 69 (12.1) | 63 (11.1) | ||
Other | 344 (20.3) | 116 (20.4) | 123 (21.7) | 116 (20.4) | ||
Pathologic findings | ||||||
Tumor size | 3.10 ± 2.11 | 3.20 ± 2.00 | 0.319 | 3.11 ± 1.83 | 3.20 ± 2.00 | 0.435 |
LN metastasis | 1.31 ± 2.73 | 1.33 ± 2.84 | 0.897 | 1.34 ± 3.01 | 1.33 ± 2.84 | 0.839 |
Lymphovascular invasion | 530 (31.3) | 153 (26.9) | 0.054 | 160 (28.2) | 153 (26.9) | 0.895 |
Perineural invasion | 745 (44.1) | 252 (44.4) | 0.937 | 221 (38.9) | 252 (44.4) | 0.430 |
Post op. initial SGL | 184.9 ± 49.1 | 182.0 ± 46.8 | 0.210 | 177.69 ± 45.7 | 182.0 ± 46.8 | 0.566 |
Post op. 1-day average SGL | 165.2 ± 20.1 | 231.2 ± 32.3 | <0.001 | 172.7 ± 16.9 | 231.2 ± 32.3 | <0.001 |
Complications (CDc) | 0.277 | 0.012 | ||||
0 | 831 (49.1) | 272 (47.9) | 286 (50.4) | 272 (47.9) | ||
I | 211 (12.5) | 68 (12.0) | 83 (14.6) | 68 (12.0) | ||
II | 315 (18.6) | 91 (16.0) | 105 (18.5) | 91 (16.0) | ||
III | 274 (16.2) | 111 (19.5) | 84 (14.8) | 111 (19.5) | ||
IV | 37 (2.2) | 14 (2.5) | 7 (1.2) | 14 (2.5) | ||
V | 23 (1.4) | 12 (2.1) | 3 (0.5) | 12 (2.1) | ||
Severe complications (CDc ≥ Grade III) | 334 (19.8) | 137 (24.1) | 0.031 | 94 (16.5) | 137 (24.1) | 0.002 |
POPF (≥Grade B) | 179 (10.6) | 71 (12.5) | 0.238 | 63 (11.1) | 71 (12.5) | 0.520 |
Re-operation | 42 (2.5) | 24 (4.2) | 0.047 | 14 (2.5) | 24 (4.2) | 0.137 |
Re-admission | 177 (10.5) | 46 (8.1) | 0.120 | 43 (7.6) | 46 (8.1) | 0.825 |
Death | 34 (2.0) | 7 (1.2) | 0.308 | 4 (0.7) | 7 (1.2) | 0.131 |
Characteristics | Univariable | Multivariable | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Sex (male) | 1.512 (1.227–1.864) | <0.001 | 1.439 (1.162–1.782) | <0.001 |
Old age (≥60 years) | 1.539 (1.247–1.901) | <0.001 | 1.371 (1.104–1.703) | 0.004 |
High BMI (≥25) | 1.284 (1.031–1.599) | 0.026 | 1.335 (1.067–1.670) | 0.011 |
Hypertension | 1.203 (0.970–1.493) | 0.092 | ||
Chronic kidney disease | 4.826 (1.894–12.300) | <0.001 | 3.719 (1.435–9.637) | 0.007 |
Neoadjuvant CTx | 1.334 (0.561–3.173) | 0.515 | ||
PD | 1.993 (1.535–2.589) | <0.001 | 1.876 (1.438–2.447) | <0.001 |
PDAC | 1.115 (0.900–1.382) | 0.319 | ||
POD 1-day avg. SGL (≥200 mg/dL) | 1.291 (1.030–1.620) | 0.027 | 1.324 (1.048–1.672) | 0.019 |
High post op. SGL (≥200 mg/dL) | 1.270 (1.026–1.572) | 0.028 | 1.267 (1.019–1.574) | 0.033 |
Characteristics | Univariable | Multivariable | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Sex (male) | 2.055 (1.198–3.523) | 0.009 | 2.053 (1.191–3.539) | 0.010 |
Old age (≥60 years) | 2.433 (1.377–4.299) | 0.002 | 1.774 (0.973–3.234) | 0.061 |
High BMI (≥25) | 0.882 (0.504–1.544) | 0.661 | ||
Hypertension | 2.436 (1.491–3.981) | <0.001 | 1.977 (1.181–3.309) | 0.010 |
Chronic kidney disease | 4.252 (0.957–18.883) | 0.057 | 2.530 (0.555–11.533) | 0.230 |
Neoadjuvant CTx | 1.282 (0.171–9.594) | 0.809 | ||
PD | 1.641 (0.872–3.089) | 0.125 | ||
PDAC | 0.843 (0.510–1.391) | 0.503 | ||
POD 1-day avg. SGL (≥200 mg/dL) | 1.732 (1.039–2.887) | 0.035 | 1.638 (1.007–2.757) | 0.048 |
High post op. SGL (≥200 mg/dL) | 1.239 (0.745–2.063) | 0.409 | 1.214 (0.726–2.030) | 0.461 |
Characteristics | Univariable | Multivariable | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Sex (male) | 1.280 (0.965–1.697) | 0.087 | ||
Old age (≥60 years) | 1.071 (0.809–1.417) | 0.634 | ||
High BMI (≥25) | 1.161 (0.860–1.567) | 0.330 | ||
Hypertension | 1.021 (0.758–1.376) | 0.891 | ||
Chronic kidney disease | 3.569 (1.260–10.106) | 0.017 | 3.274 (1.150–9.325) | 0.026 |
Neoadjuvant CTx | 2.653 (1.059–6.644) | 0.037 | 2.951 (1.164–7.476) | 0.023 |
PD | 2.053 (1.413–2.983) | <0.001 | 2.043 (1.403–2.974) | <0.001 |
PDAC | 1.026 (0.768–1.371) | 0.863 | ||
POD 1-day avg. SGL (≥200 mg/dL) | 0.754 (0.537–1.058) | 0.103 | 0.765 (0.543–1.077) | 0.125 |
High post op. SGL (≥200 mg/dL) | 1.431 (1.076–1.903) | 0.014 | 1.433 (1.076–1.910) | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, O.; Lim, C.-S.; Yoon, S.J.; Jung, J.H.; Shin, S.H.; Heo, J.S.; Shin, Y.C.; Jung, W.; Han, I.W. Comparison of Short-Term Surgical Outcomes According to Immediately Postoperative Serum Glucose Level in Non-Diabetic Pancreatic Resection Patients. Biomedicines 2022, 10, 2427. https://doi.org/10.3390/biomedicines10102427
Lee O, Lim C-S, Yoon SJ, Jung JH, Shin SH, Heo JS, Shin YC, Jung W, Han IW. Comparison of Short-Term Surgical Outcomes According to Immediately Postoperative Serum Glucose Level in Non-Diabetic Pancreatic Resection Patients. Biomedicines. 2022; 10(10):2427. https://doi.org/10.3390/biomedicines10102427
Chicago/Turabian StyleLee, Okjoo, Chang-Sup Lim, So Jeong Yoon, Ji Hye Jung, Sang Hyun Shin, Jin Seok Heo, Yong Chan Shin, Woohyun Jung, and In Woong Han. 2022. "Comparison of Short-Term Surgical Outcomes According to Immediately Postoperative Serum Glucose Level in Non-Diabetic Pancreatic Resection Patients" Biomedicines 10, no. 10: 2427. https://doi.org/10.3390/biomedicines10102427
APA StyleLee, O., Lim, C. -S., Yoon, S. J., Jung, J. H., Shin, S. H., Heo, J. S., Shin, Y. C., Jung, W., & Han, I. W. (2022). Comparison of Short-Term Surgical Outcomes According to Immediately Postoperative Serum Glucose Level in Non-Diabetic Pancreatic Resection Patients. Biomedicines, 10(10), 2427. https://doi.org/10.3390/biomedicines10102427