Changes in Circadian Variations in Blood Pressure, Pain Pressure Threshold and the Elasticity of Tissue after a Whole-Body Photobiomodulation Treatment in Patients with Fibromyalgia: A Tripled-Blinded Randomized Clinical Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Inclusion Criteria
- i.
- Age: 34 to 64 years;
- ii.
- Rheumatologist diagnosed FM based on the classification criteria of the ACR (modified 2010/2011) [35]. The following criteria must be met in order for an adult to be diagnosed with FM: (1) pain of a generalized nature in a minimum of 4 out of 5 areas; (2) a comparable degree of symptoms lasting for no less than 3 months; and (3) a score of ≥ 5 on the Symptom Severity Scale (SSS) and a score of ≥ 7 on the Widespread Pain Index (WPI); or a score of ≥ 9 on the SSS and 4 to 6 on the WPI. Additionally and importantly, the presence of other conditions or other valid diagnoses cannot be excluded in the diagnosis of FM.
2.4. Exclusion Criteria
2.5. PBM Therapy Program
Placebo Component
2.6. Data Collection
2.7. Primary Outcome Measures
Circadian BP Index
2.8. Secondary Outcome Measure
2.8.1. Pain Pressure Threshold (PPT)
2.8.2. SEL Measurements
2.9. Data Analysis
Sample Size Calculation
3. Results
Sample Characteristics
4. Discussion
4.1. Strengths and Weaknesses
4.2. Clinical Implications
4.3. Prospective
4.4. Conclusion
5. Declarations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coppieters, I.; Meeus, M.; Kregel, J.; Caeyenberghs, K.; De Pauw, R.; Goubert, D.; Cagnie, B. Relations between brain alterations and clinical pain measures in chronic musculoskeletal pain: A systematic review. J. Pain 2016, 17, 949–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mas, A.J.; Carmona, L.; Valverde, M.; Ribas, B.; EPISER Study Group. Prevalence and impact of fibromyalgia on function and quality of life in individuals from the general population: Results from a natiowide study in Spain. Clin. Exp. Rheumatol. 2008, 26, 519–526. [Google Scholar] [PubMed]
- Bellato, E.; Marini, E.; Castoldi, F.; Barbasetti, N.; Mattei, L.; Bonasia, D.E.; Blonna, D. Fibromyalgia syndrome: Etiology, pathogenesis, diagnosis, and treatment. Pain Res. Treat. 2012, 2012, 426130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Philip, J.; Mease, P.J.; Russell, A.S.; Russell, I.J.; et al. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin Arthritis Rheum. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Clauw, D.J. Fibromyalgia: A clinical review. JAMA 2014, 311, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Cagnie, B.; Coppieters, I.; Denecker, S.; Six, J.; Danneels, L.; Meeus, M. Central sensitization in fibromyalgia? A systematic review on structural and functional brain MRI. Semin. Arthritis Rheum. 2014, 44, 68–75. [Google Scholar] [CrossRef]
- Bushnell, M.C.; Marta, Č.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef] [Green Version]
- Simons, L.E.; Elman, I.; Borsook, D. Psychological processing in chronic pain: A neural systems approach. Neurosci. Biobehav. Rev. 2014, 39, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Inal, S.; Inal, E.E.; Okyay, G.U.; Öztürk, G.T.; Öneç, K.; Güz, G. Fibromyalgia and nondipper circadian blood pressure variability. J. Clin. Rheumatol. 2014, 20, 422–426. [Google Scholar] [CrossRef]
- de La Coba, P.; Bruehl, S.; Garber, J.; Smith, C.A.; Walker, L.S. Is resolution of chronic pain associated with changes in blood pressure-related hypoalgesia? Ann. Behav. Med. 2018, 52, 552–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douibi, K.; Settouti, N.; Chikh, M.A.; Read, J.; Benabid, M.M. An analysis of ambulatory blood pressure monitoring using multi-label classification. Australas. Phys. Eng. Sci. Med. 2019, 42, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.; Amir, S.; Hood, S.; Amir, S. The aging clock: Circadian rhythms and later life Find the latest version: The aging clock: Circadian rhythms and later life. J. Clin. Investig. 2017, 127, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Mattis, J.; Sehgal, A. Circadian Rhythms, Sleep, and Disorders of Aging. Trends Endocrinol. Metab. 2016, 27, 192–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondratova, A.A.; Kondratov, R.V. The circadian clock and pathology of the ageing brain. Nat. Rev. Neurosci. 2012, 13, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Abbott, S.M.; Videnovic, A. Chronic sleep disturbance and neural injury: Links to neurodegenerative disease. Nat. Sci. Sleep 2016, 8, 55–61. [Google Scholar]
- Lucassen, E.A.; Coomans, C.P.; van Putten, M.; de Kreij, S.R.; van Genugten, J.H.; Sutorius, R.P.; de Rooij, K.E.; van der Velde, M.; Verhoeve, S.L.; Smit, J.W.; et al. Environmental 24-hr Cycles Are Essential for Health. Curr. Biol. 2016, 26, 1843–1853. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.J.; Purvis, T.E.; Hu, K.; Scheer, F.A.J.L. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc. Natl. Acad. Sci. USA 2016, 113, E1402–E1411. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M.E. Breast Cancer and Circadian Disruption from Electric Lighting in the Modern World. CA Cancer J. Clin. 2014, 64, 207–218. [Google Scholar] [CrossRef]
- Choi, D.-H.; Kim, H.-S. Quantitative analysis of nailfold capillary morphology in patients with fibromyalgia. Korean J Intern Med. Korean Assoc. Intern. Med. 2015, 30, 531–537. [Google Scholar] [CrossRef]
- Morf, S.; Amann-Vesti, B.; Forster, A.; Franzeck, U.K.; Koppensteiner, R.; Uebelhart, D.; Sprott, H. Microcirculation abnormalities in patients with fibromyalgia—measured by capillary microscopy and laser fluxmetry. Arthritis Res. Ther. 2005, 7, R209–R216. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.M.S.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Portaluppi, F. Circadian variation of blood pressure: The basis for the chronotherapy of hypertension. Adv. Drug Deliv. Rev. 2007, 59, 904–922. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.A.; Fernandez, J.R.; Mojon, A.; Alonso, I.; Calvo, C. Modeling the circadian variability of ambulatorily monitored blood pressure by multiple-component analysis. Chronobiol. Int. 2002, 19, 461–481. [Google Scholar] [CrossRef]
- Portaluppi, F.; Vergnani, L.; Manfredini, R.; Fersini, C. Endocrine Mechanisms of Blood Pressure Rhythms. Ann. N. Y. Acad. Sci. 1996, 783, 113–131. [Google Scholar] [CrossRef]
- Navarro-Ledesma, S.; Pruimboom, L.; Lluch, E.; Dueñas, L.; Mena del Horno, S.; Gonzalez-Muñoz, A. The Relationship between Daily Physical Activity, Psychological Factors, and Vegetative Symptoms in Women with Fibromyalgia: A Cross-Sectional Observational Study. Int. J. Environ. Res. Public Health 2022, 19, 11610. [Google Scholar] [CrossRef]
- Yeh, S.W.; Hong, C.H.; Shih, M.C.; Tam, K.W.; Huang, Y.H.; Kuan, Y.C. Low-level laser therapy for fibromyalgia: A systematic review and meta-analysis. Pain Physician 2019, 22, 241–254. [Google Scholar] [PubMed]
- Salehpour, F.; Mahmoudi, J.; Kamari, F.; Sadigh-Eteghad, S.; Rasta, S.H.; Hamblin, M.R. Brain Photobiomodulation Therapy: A Narrative Review. Mol. Neurobiol. 2019, 55, 6601–6636. [Google Scholar] [CrossRef]
- Karu, T.I.; Pyatibrat, L.V.; Kolyakov, S.F.; Afanasyeva, N.I. Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation. J. Photochem. Photobiol. B 2005, 81, 98–106. [Google Scholar] [CrossRef]
- Karu, T.I.; Pyatibrat, L.V.; Kolyakov, S.F.; Afanasyeva, N.I. Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: Reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Photomed. Laser Surg. 2008, 26, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Benedicenti, S.; Pepe, I.M.; Angiero, F.; Benedicenti, A. Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed. Laser Surg. 2008, 26, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Bortoletto, R.; Silva, N.S.; Zângaro, R.A.; Pacheco, M.T.T.; Da Matta, R.A.; Pacheco-Soares, C. Mitochondrial membrane potential after low-power laser irradiation. Lasers Med. Sci. 2004, 18, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G.; Consolidated Standards of Reporting Trials Group. CONSORT 2010 Explanation and Elaboration: Updated guidelines for reporting parallel group randomised trials. J. Clin. Epidemiol. 2010, 63, e1–37. [Google Scholar] [CrossRef] [Green Version]
- Eldridge, S.M.; on behalf of the PAFS consensus group; Chan, C.L.; Campbell, M.J.; Bond, C.M.; Hopewell, S.; Thabane, L.; Lancaster, G.A. CONSORT 2010 statement: Extension to randomised pilot and feasibility trials. Pilot Feasibility Stud. 2016, 2, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Lee, S.J.; Lee, S.Y.; Seo, H.J.; Wang, S.M.; Park, M.H.; Patkar, A.A.; Koh, J.; Masand, P.S.; Pae, C.U. Available therapies and current management of fibromyalgia: Fcusing on pharmacological agents. Drugs Today 2011, 47, 539–557. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R.; Huang, Y.Y.; Sharma, S.K.; Carroll, J. Biphasic dose response in low level light therapy—An update. Dose-Response 2011, 9, 602–618. [Google Scholar]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S. Blood Pressure Self-Measurement Stefan Wagner Abstract. Advs. Exp. Med. Biol. 2016, 956, 97–107. [Google Scholar]
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. Criteria for the classification of fibromyalgia. Arthritis Rheumatol. 1990, 33, 160–172. [Google Scholar] [CrossRef]
- Navarro-Ledesma, S.; Gonzalez-Muñoz, A.; Carroll, J.; Burton, P. Short- and long-term effects of whole-body photobiomodulation on pain, functionality, tissue quality, central sensitisation and psychological factors in a population suffering from fibromyalgia: Protocol for a triple-blinded randomised clinical trial. Ther. Adv. Chronic. Dis. 2022, 13, 204062232210780. [Google Scholar] [CrossRef]
- Valera-Calero, J.A.; Sánchez-Jorge, S.; Buffet-García, J.; Varol, U.; Gallego-Sendarrubias, G.M.; Álvarez-González, J. Is shear-wave elastography a clinical severity indicator of myofascial pain syndrome? An observational study. J. Clin. Med. 2021, 10, 2895. [Google Scholar] [CrossRef] [PubMed]
- Kozinc, Ž.; Šarabon, N. Shear-wave elastography for assessment of trapezius muscle stiffness: Reliability and association with low-level muscle activity. PLoS ONE. 2020, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Navarro-ledesma, S.; Gonzalez-muñoz, A. Short-term effects of 448 kilohertz radiofrequency stimulation on supraspinatus tendon elasticity measured by quantitative ultrasound elastography in professional badminton players: A double- blinded randomized clinical trial. Int. J. Hyperth. 2021, 38, 421–427. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, MI, USA, 1988; p. 1390. [Google Scholar]
- Farrar, J.T.; Young, J.P.; LaMoreaux, L.; Werth, J.L.; Poole, R.M. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001, 94, 149–158. [Google Scholar] [CrossRef]
- Bourgault, P.; Lacasse, A.; Marchand, S.; Courtemanche-Harel, R.; Charest, J.; Gaumond, I.; De Souza, J.B.; Choinière, M. Multicomponent interdisciplinary group intervention for self-management of fibromyalgia: A mixed-methods randomized controlled trial. PLoS ONE 2015, 10, 1–26. [Google Scholar] [CrossRef]
- Dworkin, R.H.; Turk, D.C.; Wyrwich, K.W.; Beaton, D.; Cleeland, C.S.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Kerns, R.D.; Ader, D.N.; et al. Interpreting the Clinical Importance of Treatment Outcomes in Chronic Pain Clinical Trials: IMMPACT Recommendations. J. Pain 2008, 9, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Silveira, P.C.L.; Ferreira, G.K.; Zaccaron, R.P.; Glaser, V.; Remor, A.P.; Mendes, C.; Pinho, R.; Latini, A. Effects of photobiomodulation on mitochondria of brain, muscle, and C6 astroglioma cells. Med. Eng. Phys. 2019, 71, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Ledesma, S.; Gonzalez-Muñoz, A.; Garcia-Rios, M.C.; de la Serna, D.; Pruimboom, L. Circadian Variation of Blood Pressure in Patients with Chronic Musculoskeletal Pain: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 6418. [Google Scholar] [CrossRef]
NovoTHOR XL Specifications | |
---|---|
Wavelength Red infrared LEDs Near-infrared (NIR) LEDs 50:50 ratio | 660 nm 850 nm |
Total number of LEDs | 2880 |
Individual LED Power emission | 0.336 W |
Total Power emission | 967 W |
Individual LED beam area (LED lens/skin contact area) | 12.0 cm2 |
Dimension of emission surface | 34,544 cm2 |
Duration of Treatment | 1200 s |
Continuous Wave (CW) (not pulsed) | |
Irradiance | 0.028 W/cm2 |
Fluence | 25.2 J/cm2 |
Variable | Women Diagnosed with Fibromyalgia (n = 40) | |
---|---|---|
Mean ± SD/Frequency (%) | 95% CI | |
Age (years) | 52.8 ± 7.90 | [50.30, 55.30] |
Height (m) | 1.63 ± 0.04 | [1.61, 1.64] |
Weight (kg) | 78.20 ± 18.50 | [72.30, 81.10] |
BMI (kg/m2) | 29.40 ± 6.36 | [27.30, 31.40] |
SSS | 8.55 ± 1.29 | [8.13, 8.98] |
WPI | 8.13 ± 2.55 | [7.31, 8.94] |
Years of diagnosed FM | 8.90 ± 2.77 | [8.01, 9.79] |
Menopause status | ||
Premenopausal | 28 (70.00) | |
Postmenopausal | 12 (30.00) |
Women Diagnosed with Fibromyalgia (n = 40) | |||||
---|---|---|---|---|---|
Variable | Mean Values at Baseline ± SD | Mean Difference after Treatment | 95 % CI | p-Value SE | |
Occiput | D | 1.51 ± 0.66 | −0.273 | [−1.93, 0.45] | 0.039 * 0.127 |
ND | 1.50 ± 0.80 | −0.111 | [−2.15, 0.61] | 0.066 0.134 | |
Low cervical | D | 1.37 ± 0.57 | −0.088 | [−1.60. 0.22] | 0.749 0.114 |
ND | 1.37 ± 0.67 | −0.254 | [−1.51, 0.15] | 0.035 * 0.134 | |
Trapezius | D | 1.94 ± 0.85 | −0.101 | [−1.57, 0.19] | 0.409 0.121 |
ND | 1.63 ± 0.67 | −0.235 | [1.46, 0.11] | 0.037 * 0.109 | |
Supraspinatus | D | 2.12 ± 1.04 | −0.015 | [−1.23, 0.06] | 0.923 0.163 |
ND | 1.99 ± 0.71 | −0.189 | [−1.23, 0.07] | 0.056 0.096 | |
Paraspinous | D | 2.37 ± 0.96 | −0.200 | [−1.35, 0.02] | 0.144 0.134 |
ND | 2.60 ± 1.04 | 0.056 | [−1.55, 0.18] | 0.635 0.119 | |
Lateral pectoral | D | 1.36 ± 0.60 | −0.034 | [−1.17, 0.12] | 0.116 0.114 |
ND | 1.74 ± 0.85 | 0.183 | [−1.22, 0.07] | 0.344 | |
Second rib | D | 1.25 ± 2.26 | 0.001 | [−1.33, 0.01] | 0.997 0.361 |
ND | 0.74 ± 1.01 | −0.632 | [−1.04, 0.22] | <0.001 * 0.109 | |
Lateral epicondyle | D | 1.59 ± 1.40 | −0.072 | [−1.44, 0.10] | 0.697 0.185 |
ND | 1.62 ± 1.24 | −0.039 | [−1.47, 0.12] | 0.827 0.179 | |
Medial epicondyle | D | 1.33 ± 1.00 | −0.207 | [−2.03, 0.53] | 0.187 |
0.154 | |||||
ND | 1.41 ± 1.05 | −0.505 | [−1.92, 0.45] | 0.006 * | |
0.173 | |||||
Forearm | D | 1.73 ± 1.51 | −0.066 | [−1.85, 0.40] | 0.683 |
0.160 | |||||
ND | 1.53 ± 1.14 | −0.074 | [−1.79, 0.36] | 0.551 | |
0.124 | |||||
Gluteus | D | 2.05 ± 1.33 | 0.180 | [−1.85, 0.40] | 0.248 0.153 |
ND | 1.79 ± 1.09 | 0.125 | [−1.35, 0.03] | 0.489 0.179 | |
Greater trochanter | D | 1.81 ± 1.26 | −0.153 | [−2.04, 0.53] | 0.340 0.158 |
ND | 1.92 ± 1.41 | 0.010 | [−2.25, 0.68] | 0.948 0.158 | |
Anterior Tibial | D | 1.49 ± 1.27 | −0.123 | [−2.45, 0.78] | 0.467 0.168 |
ND | 1.45 ± 1.18 | −0.172 | [−1.67, 0.27] | 0.278 0.156 | |
BPI | −1.22 ± 8.26 | 0.025 −3.01 | [−0.329, 0.380] [−0.68, 0.55] | 0.886 0.036 * −0.06 |
Women Diagnosed with Fibromyalgia (n = 40) | |||||
---|---|---|---|---|---|
Variable | Mean Values at Baseline ± SD | Mean Difference after Treatment | 95 % CI | p-Value SE | |
Occiput | D | 2.40 ± 1.07 | 0.381 | [0.74, 0.50] | 0.136 0.12 |
ND | 2.58 ± 1.48 | −0.00 | [0.68, 0.55] | 0.979 0.21 | |
Low cervical | D | 2.04 ± 0.87 | −0.004 | [0.06, 1.39] | 0.808 0.73 |
ND | 2.18 ± 0.97 | 0.174 | [0.04, 1.27] | 0.469 0.62 | |
Trapezius | D | 2.35 ± 1.28 | 0.425 | [0.0.7, 0.52] | 0.087 0.09 |
ND | 2.38 ± 1.29 | 0.522 | [1.17, 0.12] | 0.028 * 0.53 | |
Supraspinatus | D | 2.23 ± 0.88 | 0.264 | [0.46, 0.77] | 0.125 0.15 |
ND | 2.04 ± 0.79 | −0.146 | [1.13, 0.15] | 0.480 0.49 | |
Paraspinous | D | 2.87 ± 1.23 | −0.935 | [0.42, 0.81] | 0.313 0.19 |
ND | 2.49 ± 1.16 | 0.337 | [0.31, 0.97] | 0.231 0.33 | |
Lateral pectoral | D | 1.90 ± 0.78 | 0.325 | [0.35, 0.90] | 0.082 0.28 |
ND | 2.31 ± 1.01 | 0.932 | [1.02, 0.24] | 0.079 0.39 | |
Second rib | D | 2.33 ± 0.86 | 0.291 | [0.19, 1.08] | 0.196 0.45 |
ND | 2.03 ± 0.86 | −1.74 | [0.16, 1.10] | 0.100 0.47 | |
Lateral epicondyle | D | 1.74 ± 1.03 | 0.072 | [1.24, 0.05] | 0.697 0.60 |
ND | 1.53 ± 0.85 | −0.039 | [0.90, 0.35] | 0.827 0.28 | |
Medial epicondyle | D | 1.57 ± 1.02 | −0.165 | [0.66, 0.58] | 0.476 0.04 |
ND | 1.66 ± 1.00 | −0.175 | [0.33, 0.92] | 0.572 0.29 | |
Forearm | D | 2.46 ± 1.13 | 0.730 | [0.76, 0.47] | <0.001 * 0.14 |
ND | 2.50 ± 1.22 | −0.145 | [0.51, 0.72] | 0.601 0.10 | |
Gluteus | D | 1.70 ± 0.68 | −0.025 | [0.40, 0.84] | 0.877 0.21 |
ND | 1.60 ± 0.76 | −0.146 | [0.38, 0.86] | 0.313 0.24 | |
Greater trochanter | D | 1.99 ± 1.24 | 0.058 | [0.31, 094] | 0.774 0.31 |
ND | 1.89 ± 1.12 | −0.0.09 | [0.68, 0.55] | 0.703 0.06 | |
Anterior Tibial | D | 1.59 ± 1.08 | −0.291 | [0.03, 1.27] | 0.342 0.62 |
ND | 1.56 ± 0.81 | −0.862 | [0.33, 0.92] | 0.140 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Ledesma, S.; Carroll, J.; González-Muñoz, A.; Pruimboom, L.; Burton, P. Changes in Circadian Variations in Blood Pressure, Pain Pressure Threshold and the Elasticity of Tissue after a Whole-Body Photobiomodulation Treatment in Patients with Fibromyalgia: A Tripled-Blinded Randomized Clinical Trial. Biomedicines 2022, 10, 2678. https://doi.org/10.3390/biomedicines10112678
Navarro-Ledesma S, Carroll J, González-Muñoz A, Pruimboom L, Burton P. Changes in Circadian Variations in Blood Pressure, Pain Pressure Threshold and the Elasticity of Tissue after a Whole-Body Photobiomodulation Treatment in Patients with Fibromyalgia: A Tripled-Blinded Randomized Clinical Trial. Biomedicines. 2022; 10(11):2678. https://doi.org/10.3390/biomedicines10112678
Chicago/Turabian StyleNavarro-Ledesma, Santiago, James Carroll, Ana González-Muñoz, Leo Pruimboom, and Patricia Burton. 2022. "Changes in Circadian Variations in Blood Pressure, Pain Pressure Threshold and the Elasticity of Tissue after a Whole-Body Photobiomodulation Treatment in Patients with Fibromyalgia: A Tripled-Blinded Randomized Clinical Trial" Biomedicines 10, no. 11: 2678. https://doi.org/10.3390/biomedicines10112678
APA StyleNavarro-Ledesma, S., Carroll, J., González-Muñoz, A., Pruimboom, L., & Burton, P. (2022). Changes in Circadian Variations in Blood Pressure, Pain Pressure Threshold and the Elasticity of Tissue after a Whole-Body Photobiomodulation Treatment in Patients with Fibromyalgia: A Tripled-Blinded Randomized Clinical Trial. Biomedicines, 10(11), 2678. https://doi.org/10.3390/biomedicines10112678