The Role of TIM-3 and LAG-3 in the Microenvironment and Immunotherapy of Ovarian Cancer
Abstract
:1. Introduction
2. TIM-3
2.1. Structure, General Function and Pathogenicity
2.2. TIM-3 in Ovarian Cancer
2.2.1. Expression in the Ovarian Cancer Microenvironment
2.2.2. Immunotherapy of Ovarian Cancer
3. LAG-3
3.1. Structure, General Function and Pathogenicity
3.2. LAG-3 in Ovarian Cancer
3.2.1. Expression in the Ovarian Cancer Microenvironment
3.2.2. Immunotherapy of Ovarian Cancer
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, S.; Chen, W.; Zheng, Y.; Wu, Y.; Xiang, L.; Li, T.; Yang, H. Peripheral lymphocyte populations in ovarian cancer patients and correlations with clinicopathological features. J. Ovarian Res. 2022, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nursing 2019, 35, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Rahman, M.A.; Hasan, M.N.; Akhter, H.; Noor, P.; Islam, R.; Kim, S.S. Recent Advances in Ovarian Cancer: Therapeutic Strategies, Potential Biomarkers, and Technological Improvements. Cells 2022, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Cancer Stat Facts: Ovarian Cancer. Available online: https://seer.cancer.gov/statfacts/html/ovary.html (accessed on 27 September 2022).
- Yang, C.; Xia, B.R.; Zhang, Z.C.; Zhang, Y.J.; Lou, G.; Jin, W.L. Immunotherapy for Ovarian Cancer: Adjuvant, Combination, and Neoadjuvant. Front. Immunol. 2020, 11, 577869. [Google Scholar] [CrossRef] [PubMed]
- Fares, C.M.; Van Allen, E.M.; Drake, C.G.; Allison, J.P.; Hu-Lieskovan, S. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients? Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Morand, S.; Devanaboyina, M.; Staats, H.; Stanbery, L.; Nemunaitis, J. Ovarian cancer immunotherapy and personalized medicine. Int. J. Mol. Sci. 2021, 22, 6532. [Google Scholar] [CrossRef]
- Świderska, J.; Kozłowski, M.; Kwiatkowski, S.; Cymbaluk-Płoska, A. Immunotherapy of Ovarian Cancer with Particular Emphasis on the PD-1/PDL-1 as Target Points. Cancers 2021, 13, 6063. [Google Scholar] [CrossRef]
- Borella, F.; Ghisoni, E.; Giannone, G.; Cosma, S.; Benedetto, C.; Valabrega, G.; Katsaros, D. Immune checkpoint inhibitors in epithelial ovarian cancer: An overview on efficacy and future perspectives. Diagnostics 2020, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Gomes de Morais, A.L.; Cerdá, S.; de Miguel, M. New Checkpoint Inhibitors on the Road: Targeting TIM-3 in Solid Tumors. Curr. Oncol. Rep. 2022, 24, 651–658. [Google Scholar] [CrossRef]
- Rådestad, E.; Klynning, C.; Stikvoort, A.; Mogensen, O.; Nava, S.; Magalhaes, I.; Uhlin, M. Immune profiling and identification of prognostic immune-related risk factors in human ovarian cancer. Oncoimmunology 2019, 8, e1535730. [Google Scholar] [CrossRef]
- James, N.E.; Valenzuela, A.D.; Emerson, J.B.; Woodman, M.; Miller, K.; Hovanesian, V.; Ribeiro, J.R. Intratumoral expression analysis reveals that OX40 and TIM 3 are prominently expressed and have variable associations with clinical outcomes in high grade serous ovarian cancer. Oncol. Lett. 2022, 23, 188. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Komrokji, R.S.; Brunner, A.M. TIM-3 pathway dysregulation and targeting in cancer. Expert Rev. Anticancer. Ther. 2021, 21, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Cheng, S.; Fan, L.; Zhang, B.; Xu, S. TIM-3: An update on immunotherapy. Int. Immunopharmacol. 2021, 99, 107933. [Google Scholar] [CrossRef]
- Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Kuchroo, V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 2005, 6, 1245–1252. [Google Scholar] [CrossRef]
- Acharya, N.; Sabatos-Peyton, C.; Anderson, A.C. Tim-3 finds its place in the cancer immunotherapy landscape. J. Immuno Therapy Cancer 2020, 8, e000911. [Google Scholar] [CrossRef]
- Fang, H.; Yuan, C.; Gu, X.; Chen, Q.; Huang, D.; Li, H.; Sun, M. Association between TIM-3 polymorphisms and cancer risk: A meta-analysis. Ann. Transl. Med. 2019, 7, 550. [Google Scholar] [CrossRef]
- Qin, S.; Dong, B.; Yi, M.; Chu, Q.; Wu, K. Prognostic Values of TIM-3 Expression in Patients With Solid Tumors: A Meta-Analysis and Database Evaluation. Front. Oncol. 2020, 10, 1288. [Google Scholar] [CrossRef]
- Tu, L.; Guan, R.; Yang, H.; Zhou, Y.; Hong, W.; Ma, L.; Yu, M. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival. Int. J. Cancer 2020, 147, 423–439. [Google Scholar] [CrossRef]
- Wu, J.L.; Zhao, J.; Zhang, H.B.; Zuo, W.W.; Li, Y.; Kang, S. Genetic variants and expression of the TIM-3 gene are associated with clinical prognosis in patients with epithelial ovarian cancer. Gynecol. Oncol. 2020, 159, 270–276. [Google Scholar] [CrossRef]
- Takamatsu, K.; Tanaka, N.; Hakozaki, K.; Takahashi, R.; Teranishi, Y.; Murakami, T.; Oya, M. Profiling the inhibitory receptors LAG-3, TIM-3, and TIGIT in renal cell carcinoma reveals malignancy. Nat. Commun. 2021, 12, 5547. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, S.; Toor, S.M.; Murshed, K.; Kurer, M.A.; Ahmed, A.A.; Nada, M.A.; Elkord, E. Differential expression of TIM-3 in circulation and tumor microenvironment of colorectal cancer patients. Clin. Immunol. 2020, 215, 108429. [Google Scholar] [CrossRef] [PubMed]
- Dixon, K.O.; Tabaka, M.; Schramm, M.A.; Xiao, S.; Tang, R.; Dionne, D.; Kuchroo, V.K. TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature 2021, 595, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, H.; Huang, Y.; Rui, X.; Zheng, F. Role of TIM-3 in ovarian cancer. Clin. Transl. Oncol. 2017, 19, 1079–1083. [Google Scholar] [CrossRef]
- Fucikova, J.; Rakova, J.; Hensler, M.; Kasikova, L.; Belicova, L.; Hladikova, K.; Spisek, R. TIM-3 dictates functional orientation of the immune infiltrate in ovarian cancer. Clin. Cancer Res. 2019, 25, 4820–4831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Liu, C.; Qian, S.; Hou, H. The expression of tim-3 in peripheral blood of ovarian cancer. DNA Cell Biol. 2013, 32, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Weimer, P.; Wellbrock, J.; Sturmheit, T.; Oliveira-Ferrer, L.; Ding, Y.; Menzel, S.; Brauneck, F. Tissue-Specific Expression of TIGIT, PD-1, TIM-3, and CD39 by γδ T Cells in Ovarian Cancer. Cells 2022, 11, 964. [Google Scholar] [CrossRef]
- Wherry, E.J.; Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef]
- Wherry, E.J. T cell exhaustion. Nat. Immunol. 2011, 12, 492–499. [Google Scholar] [CrossRef]
- Søndergaard, H.; Galsgaard, E.D.; Bartholomaeussen, M.; Straten, P.T.; Ødum, N.; Skak, K. Intratumoral interleukin-21 increases antitumor immunity, tumor-infiltrating CD8 + T-cell density and activity, and enlarges draining lymph nodes. J. Immunother. 2010, 33, 236–249. [Google Scholar] [CrossRef]
- Zeng, R.; Spolski, R.; Finkelstein, S.E.; Oh, S.; Kovanen, P.E.; Hinrichs, C.S.; Leonard, W.J. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med. 2005, 201, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Ma, Y.; Xu, Y.; Maerkeya, K. TIM-3 expression identifies a distinctive PD-1+ follicular helper T cell subset, with reduced interleukin 21 production and B cell help function in ovarian cancer patients. Int. Immunopharmacol. 2018, 57, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Botesteanu, D.A.; Tomita, Y.; Yuno, A.; Lee, M.J.; Kohn, E.C.; Trepel, J.B. Patients with BRCA mutated ovarian cancer may have fewer circulating MDSC and more peripheral CD8+ T cells compared with women with BRCA wild-type disease during the early disease course. Oncol. Lett. 2019, 18, 3914–3924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamat, K.; Krishnan, V.; Dorigo, O. Macrophage-derived CCL23 upregulates expression of T-cell exhaustion markers in ovarian cancer. Br. J. Cancer 2022, 127, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Sawada, M.; Goto, K.; Morimoto-Okazawa, A.; Haruna, M.; Yamamoto, K.; Yamamoto, Y.; Wada, H. PD-1+Tim3+tumor-infiltrating CD8 T cells sustain the potential for IFN-γproduction, but lose cytotoxic activity in ovarian cancer. Int. Immunol. 2020, 32, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Blanc-Durand, F.; Genestie, C.; Galende, E.Y.; Gouy, S.; Morice, P.; Pautier, P.; Leary, A. Distribution of novel immune-checkpoint targets in ovarian cancer tumor microenvironment: A dynamic landscape. Gynecol. Oncol. 2021, 160, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Bu, M.; Shen, Y.; Seeger, W.L.; An, S.; Qi, R.; Sanderson, J.A.; Cai, Y. Ovarian carcinoma-infiltrating regulatory T cells were more potent suppressors of CD8+ T cell inflammation than their peripheral counterparts, a function dependent on TIM3 expression. Tumor Biol. 2016, 37, 3949–3956. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Y.; Zhang, J.P.; Liang, J.; Li, L.; Zheng, L. Tim-3 Expression Defines Regulatory T Cells in Human Tumors. PLoS ONE 2013, 8, e58006. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Hasegawa, K.; Matsushita, H.; Fujieda, N.; Sato, S.; Miyagi, E.; Fujiwara, K. Expression of multiple immune checkpoint molecules on t cells in malignant ascites from epithelial ovarian carcinoma. Oncol. Lett. 2018, 15, 6457–6468. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Cheng, D.; Xia, Z.; Luan, M.; Wu, L.; Wang, G.; Zhang, S. Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer. J. Transl. Med. 2013, 11, 215. [Google Scholar] [CrossRef]
- Curigliano, G.; Gelderblom, H.; Mach, N.; Doi, T.; Tai, D.; Forde, P.M.; Naing, A. Phase I/Ib clinical trial of sabatolimab, an anti–TIM-3 antibody, alone and in combination with spartalizumab, an anti–PD-1 antibody, in advanced solid tumors. Clin. Cancer Res. 2021, 27, 3620–3629. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Chen, L.; Liu, Q.; Kong, X.; Fang, Y.; Wang, J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy. Front. Immunol. 2021, 11, 563258. [Google Scholar] [CrossRef] [PubMed]
- Chocarro, L.; Blanco, E.; Zuazo, M.; Arasanz, H.; Bocanegra, A.; Fernández-Rubio, L.; Escors, D. Understanding lag-3 signaling. Int. J. Mol. Sci. 2021, 22, 5282. [Google Scholar] [CrossRef] [PubMed]
- Triebel, F.; Jitsukawa, S.; Baixeras, E.; Roman-Roman, S.; Genevee, C.; Viegas-Pequignot, E.; Hercend, T. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 1990, 171, 1393–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Wang, H.; Xu, K.; Liu, X.; He, Y. Update on lymphocyte-activation gene 3 (LAG-3) in cancers: From biological properties to clinical applications. Chin. Med. J. 2022, 135, 1203–1212. [Google Scholar] [CrossRef]
- Workman, C.J.; Vignali, D.A. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur. J. Immunol. 2003, 33, 970–979. [Google Scholar] [CrossRef]
- Maruhashi, T.; Sugiura, D.; Okazaki, I.M.; Okazaki, T. LAG-3: From molecular functions to clinical applications. J. Immunother. Cancer 2020, 8, e001014. [Google Scholar] [CrossRef]
- Okazaki, T.; Okazaki, I.M.; Wang, J.; Sugiura, D.; Nakaki, F.; Yoshida, T.; Honjo, T. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J. Exp. Med. 2011, 208, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Durham, N.M.; Nirschl, C.J.; Jackson, C.M.; Elias, J.; Kochel, C.M.; Anders, R.A.; Drake, C.G. Lymphocyte activation gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed In Vivo. PLoS ONE 2014, 9, e109080. [Google Scholar] [CrossRef] [Green Version]
- Peña, J.; Jones, N.G.; Bousheri, S.; Bangsberg, D.R.; Cao, H. Lymphocyte activation gene-3 expression defines a discrete subset of HIV-Specific CD8+ T cells that is associated with Lower Viral Load. AIDS Res. Hum. Retrovir. 2014, 30, 535–541. [Google Scholar] [CrossRef]
- Huang, C.T.; Workman, C.J.; Flies, D.; Pan, X.; Marson, A.L.; Zhou, G.; Vignali, D.A. Role of LAG-3 in regulatory T cells. Immunity 2004, 21, 503–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huard, B.; Tournier, M.; Triebel, F. LAG-3 does not define a specific mode of natural killing in human. Immunol. Lett. 1998, 61, 109–112. [Google Scholar] [CrossRef]
- Kisielow, M.; Kisielow, J.; Capoferri-Sollami, G.; Karjalainen, K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur. J. Immunol. 2005, 35, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Andreae, S.; Buisson, S.; Triebel, F. MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood 2003, 102, 2130–2137. [Google Scholar] [CrossRef] [Green Version]
- Huard, B.; Mastrangeli, R.; Prigent, P.; Bruniquel, D.; Donini, S.; El-Tayar, N.; Triebel, F. Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc. Natl. Acad. Sci. USA 1997, 94, 5744–5749. [Google Scholar] [CrossRef] [Green Version]
- Long, L.; Zhang, X.; Chen, F.; Pan, Q.; Phiphatwatchara, P.; Zeng, Y.; Chen, H. The promising immune checkpoint LAG-3: From tumor microenvironment to cancer immunotherapy. Genes Cancer 2018, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Huard, B.; Prigent, P.; Tournier, M.; Bruniquel, D.; Triebel, F. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur. J. Immunol. 1995, 25, 2718–2721. [Google Scholar] [CrossRef]
- Huard, B.; Tournier, M.; Hercend, T.; Triebel, F.; Faure, F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur. J. Immunol. 1994, 24, 3216–3221. [Google Scholar] [CrossRef]
- Huard, B.; Prigent, P.; Pagès, F.; Bruniquel, D.; Triebel, F. T cell major histocompatibility complex class II molecules down-regulate CD4+ T cell clone responses following LAG-3 binding. Eur. J. Immunol. 1996, 26, 1180–1186. [Google Scholar] [CrossRef]
- Hemon, P.; Jean-Louis, F.; Ramgolam, K.; Brignone, C.; Viguier, M.; Bachelez, H.; Michel, L. MHC Class II Engagement by Its Ligand LAG-3 (CD223) Contributes to Melanoma Resistance to Apoptosis. J. Immunol. 2011, 186, 5173–5183. [Google Scholar] [CrossRef]
- Donia, M.; Andersen, R.; Kjeldsen, J.W.; Fagone, P.; Munir, S.; Nicoletti, F.; Svane, I.M. Aberrant expression of MHC class II in melanoma attracts inflammatory tumor-specific CD4+ T-cells, which dampen CD8+ T-cell antitumor reactivity. Cancer Res. 2015, 75, 3747–3759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Wang, J.; Yang, G.; Yu, N.; Huang, Z.; Xu, H.; Liu, H. Posttranscriptional regulation of Galectin-3 by miR-128 contributes to colorectal cancer progression. Oncotarget 2017, 8, 15242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Feng, Y.M.; Fang, S.Q. Overexpression of ezrin and galectin-3 as predictors of poor prognosis of cervical cancer. Braz. J. Med. Biol. Res. 2017, 50, e5356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouo, T.; Huang, L.; Pucsek, A.B.; Cao, M.; Solt, S.; Armstrong, T.; Jaffee, E. Galectin-3 shapes antitumor immune responses by suppressing CD8 T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells. Cancer Immunol. Res. 2015, 3, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Sanmamed, M.F.; Datar, I.; Su, T.T.; Ji, L.; Sun, J.; Chen, L. Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell 2019, 176, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Ye, J.; Ma, Y.; Hua, P.; Huang, Y.; Fu, X.; Xia, Z. Function of T regulatory type 1 cells is down-regulated and is associated with the clinical presentation of coronary artery disease. Hum. Immunol. 2018, 79, 564–570. [Google Scholar] [CrossRef]
- Rodriguez, A. High HDL-Cholesterol Paradox: SCARB1-LAG3-HDL Axis. Curr. Atheroscler. Rep. 2021, 23, 5. [Google Scholar] [CrossRef]
- Delmastro, M.M.; Styche, A.J.; Trucco, M.M.; Workman, C.J.; Vignali, D.A.; Piganelli, J.D. Modulation of redox balance leaves murine diabetogenic TH1 T cells ‘LAG-3-ing’ behind. Diabetes 2012, 61, 1760–1768. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Duvefelt, K.; Svensson, F.; Masterman, T.; Jonasdottir, G.; Salter, H.; Anvret, M. Two genes encoding immune-regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis. Genes Immun. 2005, 6, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Zhou, M.; Qiu, J.; Lin, Y.; Chen, X.; Huang, S.; Xu, P. Association of LAG3 genetic variation with an increased risk of PD in Chinese female population. J. Neuroinflammat. 2019, 16, 270. [Google Scholar] [CrossRef]
- Bauché, D.; Joyce-Shaikh, B.; Jain, R.; Grein, J.; Ku, K.S.; Blumenschein, W.M.; Cua, D.J. LAG3 + Regulatory T Cells Restrain Interleukin-23-Producing CX3CR1 + Gut-Resident Macrophages during Group 3 Innate Lymphoid Cell-Driven Colitis. Immunity 2018, 49, 342–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slevin, S.M.; Garner, L.C.; Lahiff, C.; Tan, M.; Wang, L.M.; Ferry, H.; Keshav, S. Lymphocyte Activation Gene (LAG)-3 Is Associated with Mucosal Inflammation and Disease Activity in Ulcerative Colitis. J. Crohns Colitis 2020, 14, 1446–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.J.; Zhang, Y.; Jin, G.X.; Yao, L.; Wu, D.Q. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8+ T cell in HCC patients. Immunol. Lett. 2013, 150, 116–122. [Google Scholar] [CrossRef]
- Phillips, B.L.; Mehra, S.; Ahsan, M.H.; Selman, M.; Khader, S.A.; Kaushal, D. LAG3 expression in active mycobacterium tuberculosis infections. Am. J. Pathol. 2015, 185, 820–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohmura, H. OX40 and LAG3 are associated with better prognosis in advanced gastric cancer patients treated with anti-programmed death-1 antibody. Br. J. Cancer 2020, 122, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, F.; Krämer, M.; Bruns, C.; Schlößer, H.A.; Thelen, M.; Lohneis, P.; Quaas, A. Lymphocyte activation gene-3 (LAG3) mRNA and protein expression on tumour infiltrating lymphocytes (TILs) in oesophageal adenocarcinoma. J. Cancer Res. Clin. Oncol. 2020, 146, 2319–2327. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, R.; Xu, C.; Zhang, Y.; Deng, M.; Wu, D.; Miao, J. Analysis of the immune checkpoint lymphocyte activation gene-3 (LAG-3) in endometrial cancer: An emerging target for immunotherapy. Pathol. Res. Pract. 2022, 236, 153990. [Google Scholar] [CrossRef]
- Wang, H.; Mao, L.; Zhang, T.; Zhang, L.; Wu, Y.; Guo, W.; Ren, G. Altered expression of TIM-3, LAG-3, IDO, PD-L1, and CTLA-4 during nimotuzumab therapy correlates with responses and prognosis of oral squamous cell carcinoma patients. J. Oral Pathol. Med. 2019, 48, 669–676. [Google Scholar] [CrossRef]
- Arolt, C.; Meyer, M.; Ruesseler, V.; Nachtsheim, L.; Wuerdemann, N.; Dreyer, T.; Klussmann, J.P. Lymphocyte activation gene 3 (LAG3) protein expression on tumor-infiltrating lymphocytes in aggressive and TP53-mutated salivary gland carcinomas. Cancer Immunol. Immunother. 2020, 69, 1363–1373. [Google Scholar] [CrossRef] [Green Version]
- Seifert, L.; Plesca, I.; Müller, L.; Sommer, U.; Heiduk, M.; von Renesse, J.; Seifert, A.M. LAG-3-expressing tumor-infiltrating T cells are associated with reduced disease-free survival in pancreatic cancer. Cancers 2021, 13, 1297. [Google Scholar] [CrossRef]
- Giraldo, N.A.; Becht, E.; Vano, Y.; Petitprez, F.; Lacroix, L.; Validire, P.; Sautès-Fridman, C. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin. Cancer Res. 2017, 23, 4416–4428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehair, R.; Peres, L.C.; Mills, A.M. Expression of the Immune Checkpoints LAG-3 and PD-L1 in High-grade Serous Ovarian Carcinoma: Relationship to Tumor-associated Lymphocytes and Germline BRCA Status. Int. J. Gynecol. Pathol. 2020, 39, 558–566. [Google Scholar] [CrossRef]
- Huang, R.Y.; Francois, A.; McGray, A.R.; Miliotto, A.; Odunsi, K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology 2017, 6, e1249561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.Y.; Eppolito, C.; Lele, S.; Shrikant, P.; Matsuzaki, J.; Odunsi, K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget 2015, 6, 27359. [Google Scholar] [CrossRef]
- Matsuzaki, J.; Gnjatic, S.; Mhawech-Fauceglia, P.; Beck, A.; Miller, A.; Tsuji, T.; Odunsi, K. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl. Acad. Sci. USA 2010, 107, 7875–7880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Kim, J.Y.; Lee, Y.J.; Kim, S.H.; Lee, J.Y.; Nam, E.J.; Kim, Y.T. Expression of programmed cell death ligand 1 and immune checkpoint markers in residual tumors after neoadjuvant chemotherapy for advanced high-grade serous ovarian cancer. Gynecol. Oncol. 2018, 151, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Hensler, M.; Kasikova, L.; Fiser, K.; Rakova, J.; Skapa, P.; Laco, J.; Fucikova, J. M2-like macrophages dictate clinically relevant immunosuppression in metastatic ovarian cancer. J. Immunother. Cancer 2020, 8, e000979. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.K., Jr. PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T cells in human ovarian cancer. Cancer Immunol. Res. 2015, 3, 926–935. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Guo, J.; Zhu, L.; Zhou, Y.; Tong, J. Comprehensive analyses of glycolysis-related lncRNAs for ovarian cancer patients. J. Ovarian Res. 2021, 14, 124. [Google Scholar] [CrossRef]
- Tian, W.; Shan, B.; Zhang, Y.; Ren, Y.; Liang, S.; Zhao, J. Association between DNA damage repair gene somatic mutations and immune-related gene expression in ovarian cancer. Cancer Med. 2020, 9, 2190–2200. [Google Scholar] [CrossRef]
- Ma, S.; Zheng, Y.; Fei, C. Identification of key factors associated with early- and late-onset ovarian serous cystadenocarcinoma. Future Oncol. 2020, 16, 2821–2833. [Google Scholar] [CrossRef] [PubMed]
- Vanguri, R.; Benhamida, J.; Young, J.H.; Li, Y.; Zivanovic, O.; Chi, D.; Mager, K.L. Understanding the impact of chemotherapy on the immune landscape of high-grade serous ovarian cancer. Gynecol. Oncol. Rep. 2022, 39, 100926. [Google Scholar] [CrossRef] [PubMed]
- James, N.E.; Miller, K.; LaFranzo, N.; Lips, E.; Woodman, M.; Ou, J.; Ribeiro, J.R. Immune Modeling Analysis Reveals Immunologic Signatures Associated With Improved Outcomes in High Grade Serous Ovarian Cancer. Front. Oncol. 2021, 11, 622182. [Google Scholar] [CrossRef] [PubMed]
- Naing, A.; Gainor, J.F.; Gelderblom, H.; Forde, P.M.; Butler, M.O.; Lin, C.C.; Bauer, T.M. A first-in-human phase 1 dose escalation study of spartalizumab (PDR001), an anti-PD-1 antibody, in patients with advanced solid tumors. J. Immunother. Cancer 2020, 8, e000530. [Google Scholar] [CrossRef] [PubMed]
Reference | Lymphocyte Subset | Types of Cells | Expression of Other Molecules | Observations |
---|---|---|---|---|
[26] | TILs | CD8+ T cells | PD-1, LAG-3, CTLA-4, PD-L1 | expression assessment, correlations between subsets, survival prediction |
[21] | ND | ND | - | expression assessment, correlation of TIM-3 polymorphisms with susceptibility to EOC |
[28] | MALs, TILs, PBLs | γδ T cells | TIGIT, PD-1, OX40,CD39, CD73 | expression assessment, correlations between subsets |
MALs, TILs, PBLs | Vδ1 T cells | TIGIT, PD-1, OX40,CD39, CD73 | ||
MALs, TILs, PBLs | Vδ2 T cells | TIGIT, PD-1, OX40,CD39, CD73 | ||
[11] | TALs | CD4+ T cells | PD-1,LAG-3, CTLA-4 | expression assessment, correlations between subsets, determination of clinical relevance and risk factors |
TALs | CD8+ T cells | PD-1,LAG-3, CTLA-4 | ||
TILs | CD4+ T cells | PD-1,LAG-3, CTLA-4 | ||
TILs | CD8+ T cells | PD-1,LAG-3, CTLA-4 | ||
PBLs | CD4+ T cells | PD-1,LAG-3, CTLA-4 | ||
PBLs | CD8+ T cells | PD-1,LAG-3, CTLA-4 | ||
[12] | TILs | CD4+ T cells | OX40 | expression assessment, survival prediction; |
TILs | CD8+ T cells | OX40 | ||
[33] | TI | Tfh cells | PD-1 | expression assessment, correlations between subsets |
PB | Tfh cells | PD-1 | ||
[34] | PBMC | Treg | CTLA-4 | expression assessment, survival prediction; |
PBMC | CD8+ T cells | PD-1,CTLA-4 | ||
[20] | ND | ND | PD-1, CTLA-4, LAG-3 | expression assessment, correlation with immune cells subsets, survival prediction; |
[35] | PBMCs | CD8+ T cells | CTLA-4, TIGIT, PD-1, LAG-3 | expression assessment, immune checkpoint upregulation via CCL23 |
[36] | TILs | CD8+ T cells | PD-1 | expression assessment, survival prediction, assessment of risk of recurrence |
PBMCs | CD8+ T cells | PD-1 | ||
[37] | immune cells (not specified) | ND | PD-L1, IDO, LAG-3 | expression assessment, correlation with TILs, prognostic impact |
[38] | TILs | Treg | Foxp3 | expression assessment, correlation with tumor size |
PBMCs | Treg | Foxp3 | ||
[39] | PBMCs | CD4+ T cells | - | expression assessment |
TILs | CD4+ T cells | Foxp3, CD25 | ||
[40] | MALs | CD8+ T cells | PD-1, LAG-3, BTLA | expression assessment |
MALs | CD4+ T cells | PD-1, LAG-3, BTLA |
Drug Name | Drug Type | Combination Agents | Phase | Clinical Trial Number | Status |
---|---|---|---|---|---|
INCAGN02390 | anti-TIM-3 | - | I | NCT03652077 | Completed |
MBG453 (Sabatolimab) | anti-TIM-3 | PDR001 (spartalizumab), Decitabine | I-Ib/II | NCT02608268 | Terminated |
Reference | Lymphocyte Subset | Types of Cells | Expression of Other Molecules | Observations |
---|---|---|---|---|
[83] | TALs | ND | FOXP-3, CD8 | assessment of LAG-3+ lymphocytes, association with PD-L1 expression and BRCA status |
[84] | TALs | CD8+ T cells | PD-1, CTLA-4 (murine); PD-1, TIM-3 (human) | expression assessment, assessment of immune checkpoint inhibition |
TALs | CD4+ T cells | PD-1, CTLA-4 (murine); PD-1, TIM-3 (human) | ||
[85] | TILs | CD8+ T cells | PD-1 | expression assessment, assessment of the enhancement of anti-tumor immunity and immune checkpoint inhibition |
TILs | CD4+ T cells | PD-1 | ||
[86] | TILs | CD8+ T cells | PD-1 | expression assessment, comparative assessment of cells function, assessment of immune checkpoint inhibition, indication that PD-1 and LAG-3 can be induced by ascites without antigenic stimulation |
TALs | CD8+ T cells | PD-1 | ||
PBLs | CD8+ T cells | PD-1 | ||
[11] | TILs | CD8+ T cells | PD-1, TIM-3, CTLA-4 | expression assessment, correlations between subsets, determination of clinical relevance and risk factors |
TILs | CD4+ T cells | PD-1, TIM-3, CTLA-4 | ||
TALs | CD8+ T cells | PD-1, TIM-3, CTLA-4 | ||
TALs | CD4+ T cells | PD-1, TIM-3, CTLA-4 | ||
PBLs | CD8+ T cells | PD-1, TIM-3, CTLA-4 | ||
PBLs | CD4+ T cells | PD-1, TIM-3, CTLA-4 | ||
[26] | TILs | CD8+ T cells | PD-1, PD-L1, CTLA-4, TIM-3 | expression assessment, correlations between subsets, survival prediction |
[87] | TILs | ND | PD-1, PD-L1, ICOS | expression assessment, survival prediction |
[88] | TILs | ND | PD-1, PD-L1, TIM-3 | expression assessment |
[89] | TILs | PD-1+CD103+CD8+ T cells | TIM-3, CTLA-4 | expression assessment |
[40] | MALs | CD8+ T cells | PD-1, TIM-3, BTLA | expression assessment |
MALs | CD4+ T cells | PD-1, TIM-3, BTLA | ||
[35] | PBMCs | CD8+ T cells | CTLA-4, TIGIT, TIM-3, PD-1 | immune checkpoints regulation via CCL23 |
[37] | immune cells (not specified) | ND | IDO, TIM-3, PD-L1 | expression assessment, correlation with TILs, prognostic impact |
[90] | ND | ND | CD274, VTCN1, CD47 | expression assessment |
[91] | tumor-infiltrating immune cells | ND | PTPRCAP, CCL5, IFI16, IL15RA, GBP1 | expression assessment, association with DNA damage repair deficiency |
[92] | ND | ND | MT1B, LRRC63, CA1, CDC25A | expression assessment, survival prediction |
[93] | tumor- and stroma-infiltrating lymphocytes | CD8+ T cells | PD-1, GITR | expression assessment associated with chemotherapy |
tumor- and stroma-infiltrating lymphocytes | FOXP3+ T cells | PD-1, GITR | ||
[20] | ND | ND | PD-1, CTLA-4, TIM-3 | expression assessment, correlations with immune cells subsets, survival prediction |
[94] | ND | ND | CTLA-4, ICOS, PD-1, PD-L1, TNFRSF18 | expression assessment, correlations with immune cells subsets, survival prediction |
Drug Name | Drug Type | Combination Agents | Phase | Clinical Trial Number | Status |
---|---|---|---|---|---|
Relatlimab | anti-LAG-3 | Ipilimumab, Cyclophosphamid, Fludarabine Phosphate, Tumor Infiltrating Lymphocytes infusion, Nivolumab | I, II | NCT04611126 | Recruiting |
Tebotelimab | bispecific: anti-PD-1 and anti-LAG-3 | Margetuximab | I | NCT03219268 | Active, not recruiting |
INCAGN02385 | anti-LAG-3 | - | I | NCT03538028 | Completed |
Relatlimab | anti-LAG-3 | Adavosertib, Afatinib, Afatinib Dimaleate, Binimetinib, Capivasertib, Copanlisib, Copanlisib Hydrochloride, Crizotinib, Dabrafenib, Dabrafenib Mesylate, Dasatinib, Defactinib, Defactinib Hydrochloride, Erdafitinib, FGFR Inhibitor AZD4547, Ipatasertib, Larotrectinib, Larotrectinib Sulfate, Nivolumab, Osimertinib, Palbociclib, Pertuzumab, PI3K-beta Inhibitor GSK2636771, Sapanisertib, Sunitinib Malate, Taselisib, Trametinib, Trastuzumab, Trastuzumab Emtansine, Ulixertinib, Vismodegib | II | NCT02465060 | Recruiting |
XmAb®®22841 | bispecific: anti-CTLA-4 and anti-LAG-3 | Pembrolizumab | I | NCT03849469 | Active, not recruiting |
LAG525 | anti-LAG-3 | PDR001 | II | NCT03365791 | Completed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowski, M.; Borzyszkowska, D.; Cymbaluk-Płoska, A. The Role of TIM-3 and LAG-3 in the Microenvironment and Immunotherapy of Ovarian Cancer. Biomedicines 2022, 10, 2826. https://doi.org/10.3390/biomedicines10112826
Kozłowski M, Borzyszkowska D, Cymbaluk-Płoska A. The Role of TIM-3 and LAG-3 in the Microenvironment and Immunotherapy of Ovarian Cancer. Biomedicines. 2022; 10(11):2826. https://doi.org/10.3390/biomedicines10112826
Chicago/Turabian StyleKozłowski, Mateusz, Dominika Borzyszkowska, and Aneta Cymbaluk-Płoska. 2022. "The Role of TIM-3 and LAG-3 in the Microenvironment and Immunotherapy of Ovarian Cancer" Biomedicines 10, no. 11: 2826. https://doi.org/10.3390/biomedicines10112826
APA StyleKozłowski, M., Borzyszkowska, D., & Cymbaluk-Płoska, A. (2022). The Role of TIM-3 and LAG-3 in the Microenvironment and Immunotherapy of Ovarian Cancer. Biomedicines, 10(11), 2826. https://doi.org/10.3390/biomedicines10112826