Membrane Blue Dual Protects Retinal Pigment Epithelium Cells/Ganglion Cells—Like through Modulation of Mitochondria Function
Abstract
:1. Introduction
2. Materials and Methods
Cell Cultures
3. Experimental Protocol
3.1. Preliminary Phase
3.2. Cell Viability
3.3. Extended Phase
3.4. Mitochondrial Membrane Potential
3.5. Mitochondrial ROS (MitoROS) Release
3.6. Proliferation Rate
3.7. Migration Rate
3.8. Apoptosis Detection
4. Statistical Analysis
5. Results
5.1. Preliminary Phase
5.2. Effects of MBD with/without PEG on Oxidative Stress and Mitochondria Function
5.3. Effects of MBD with/without PEG on Proliferation and Migration
5.4. Effects of MBD with/without PEG on Apoptosis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergamo, V.C.; Caiado, R.R.; Maia, A.; Magalhães, O., Jr.; Moraes, N.S.B.; Rodrigues, E.B.; Farah, M.E.; Maia, M. Role of Vital Dyes in Chromovitrectomy. Asia Pac. J. Ophthalmol. 2020, 10, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Hernández, F.; Alpizar-Alvarez, N.; Wu, L. Chromovitrectomy: An update. J. Ophthalmic Vis. Res. 2014, 9, 251–259. [Google Scholar] [PubMed]
- Abdelkader, E.A.; McBain, V.A.; Anand, M.; Scott, N.W.; Rehman Siddiqui, M.A.; Lois, N. In vivo safety of trypan blue use in vitreoretinal surgery. Retina 2011, 31, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Sheu, S.J.; Chen, J.L.; Bee, Y.S.; Chen, Y.; Lin, S.H.; Shu, C.W. Differential autophagic effects of vital dyes in retinal pigment epithelial ARPE-19 and photoreceptor 661W cells. PLoS ONE 2017, 12, e0174736. [Google Scholar] [CrossRef] [Green Version]
- Morales, M.C.; Freire, V.; Asumendi, A.; Araiz, J.; Herrera, I.; Castiella, G.; Corcóstegui, I.; Corcóstegui, G. Comparative effects of six intraocular vital dyes on retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6018–6029. [Google Scholar] [CrossRef] [Green Version]
- Gandorfer, A.; Haritoglou, C.; Gandorfer, A.; Kampik, A. Retinal damage from indocyanine green in experimental macular surgery. Investig. Ophthalmol. Vis. Sci. 2003, 44, 316–323. [Google Scholar] [CrossRef]
- Ho, J.D.; Tsai, R.J.; Chen, S.N.; Chen, H.C. Toxic effect of indocyanine green on retinal pigment epithelium related to osmotic effects of the solvent. Am. J. Ophthalmol. 2003, 135, 258–259. [Google Scholar] [CrossRef]
- Iriyama, A.; Uchida, S.; Yanagi, Y.; Tamaki, Y.; Inoue, Y.; Matsuura, K.; Kadonosono, K.; Araie, M. Effects of indocyanine green on retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 2004, 45, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Rezai, K.A.; Farrokh-Siar, L.; Ernest, J.T.; van Seventer, G.A. Indocyanine green induces apoptosis in human retinal pigment epithelial cells. Am. J. Ophthalmol. 2004, 137, 931–933. [Google Scholar] [CrossRef]
- Ando, F.; Sasano, K.; Ohba, N.; Hirose, H.; Yasui, O. Anatomic and visual outcomes after indocyanine green-assisted peeling of the retinal internal limiting membrane in idiopathic macular hole surgery. Am. J. Ophthalmol. 2004, 137, 609–614. [Google Scholar]
- Tsuiki, E.; Fujikawa, A.; Miyamura, N.; Yamada, K.; Mishima, K.; Kitaoka, T. Visual field defects after macular hole surgery with indocyanine green-assisted internal limiting membrane peeling. Am. J. Ophthalmol. 2007, 143, 704–705. [Google Scholar] [CrossRef] [PubMed]
- Nareshkumar, R.; Karthikkeyan, G.; Ratra, D.; Coral, K. Effect of brilliant Blue-G on cellular stress response in retinal pigment epithelial cells: In vitro. Exp. Eye Res. 2019, 181, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, F.; Schiavone, N.; Papucci, L.; Bitossi, A.; Andreucci, E.; Pontenani, F.; Cutrì, M.; Menchini, U. Safety testing of blue vital dyes using cell culture models. J. Ocul. Pharmacol. Ther. 2014, 30, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Awad, D.; Schrader, I.; Bartok, M.; Sudumbrekar, N.; Mohr, A.; Gabel, D. Brilliant Blue G as protective agent against trypan blue toxicity in human retinal pigment epithelial cells in vitro. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Veckeneer, M.; Mohr, A.; Alharthi, E.; Azad, R.; Bashshur, Z.F.; Bertelli, E.; Bejjani, R.A.; Bouassida, B.; Bourla, D.; Corcóstegui Crespo, I.; et al. Novel ‘heavy’ dyes for retinal membrane staining during macular surgery: Multicenter clinical assessment. Acta Ophthalmol. 2014, 92, 339–344. [Google Scholar] [CrossRef]
- Awad, D.; Schrader, I.; Bartok, M.; Mohr, A.; Gabel, D. Comparative toxicology of trypan blue, brilliant blue G, and their combination together with polyethylene glycol on human pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4085–4090. [Google Scholar] [CrossRef]
- Youn, H.Y.; McCanna, D.J.; Sivak, J.G.; Jones, L.W. In vitro ultraviolet-induced damage in human corneal, lens, and retinal pigment epithelial cells. Mol. Vis. 2011, 17, 237–246. [Google Scholar]
- Balaiya, S.; Murthy, R.K.; Brar, V.S.; Chalam, K.V. Evaluation of ultraviolet light toxicity on cultured retinal pigment epithelial and retinal ganglion cells. Clin. Ophthalmol. 2010, 4, 33–39. [Google Scholar]
- De Cillà, S.; Farruggio, S.; Cocomazzi, G.; Mary, D.; Alkabes, M.; Rossetti, L.; Vujosevic, S.; Grossini, E. Aflibercept and Ranibizumab Modulate Retinal Pigment Epithelial Cells Function by Acting on Their Cross Talk with Vascular Endothelial Cells. Cell Physiol. Biochem. 2020, 54, 161–179. [Google Scholar]
- De Cillà, S.; Farruggio, S.; Vujosevic, S.; Raina, G.; Filippini, D.; Gatti, V.; Clemente, N.; Mary, D.; Vezzola, D.; Casini, G.; et al. Anti-Vascular Endothelial Growth Factors Protect Retinal Pigment Epithelium Cells Against Oxidation by Modulating Nitric Oxide Release and Autophagy. Cell Physiol. Biochem. 2017, 42, 1725–1738. [Google Scholar] [CrossRef]
- Surico, D.; Bordino, V.; Cantaluppi, V.; Mary, D.; Gentilli, S.; Oldani, A.; Farruggio, S.; Melluzza, C.; Raina, G.; Grossini, E. Preeclampsia and intrauterine growth restriction: Role of human umbilical cord mesenchymal stem cells-trophoblast cross-talk. PLoS ONE 2019, 14, e0218437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savoia, P.; Raina, G.; Camillo, L.; Farruggio, S.; Mary, D.; Veronese, F.; Graziola, F.; Zavattaro, E.; Tiberio, R.; Grossini, E. Anti-oxidative effects of 17 β-estradiol and genistein in human skin fibroblasts and keratinocytes. J. Dermatol. Sci. 2018, 92, 62–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossini, E.; Raina, G.; Farruggio, S.; Camillo, L.; Molinari, C.; Mary, D.; Walker, G.E.; Bona, G.; Vacca, G.; Moia, S.; et al. Intracoronary Des-Acyl Ghrelin Acutely Increases Cardiac Perfusion Through a Nitric Oxide-Related Mechanism in Female Anesthetized Pigs. Endocrinology 2016, 157, 2403–2415. [Google Scholar] [CrossRef]
- Grossini, E.; Farruggio, S.; Raina, G.; Mary, D.; Deiro, G.; Gentilli, S. Effects of Genistein on Differentiation and Viability of Human Visceral Adipocytes. Nutrients 2018, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Grossini, E.; Gramaglia, C.; Farruggio, S.; Bellofatto, K.; Anchisi, C.; Mary, D.; Vacca, G.; Zeppegno, P. Asenapine increases nitric oxide release and protects porcine coronary artery endothelial cells against peroxidation. Vascul. Pharmacol. 2014, 60, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Farruggio, S.; Raina, G.; Cocomazzi, G.; Librasi, C.; Mary, D.; Gentilli, S.; Grossini, E. Genistein improves viability, proliferation and mitochondrial function of cardiomyoblasts cultured in physiologic and peroxidative conditions. Int. J. Mol. Med. 2019, 44, 2298–2310. [Google Scholar] [CrossRef]
- Toma, C.; De Cillà, S.; Palumbo, A.; Garhwal, D.P.; Grossini, E. Oxidative and Nitrosative Stress in Age-Related Macular Degeneration: A Review of Their Role in Different Stages of Disease. Antioxidants 2021, 10, 653. [Google Scholar] [CrossRef]
- Grossini, E.; Concina, D.; Rinaldi, C.; Russotto, S.; Garhwal, D.; Zeppegno, P.; Gramaglia, C.; Kul, S.; Panella, M. Association Between Plasma Redox State/Mitochondria Function and a Flu-Like Syndrome/COVID-19 in the Elderly Admitted to a Long-Term Care Unit. Front. Physiol. 2021, 12, 707587. [Google Scholar] [CrossRef]
- Roos, N.J.; Duthaler, U.; Bouitbir, J.; Krähenbühl, S. The uricosuric benzbromarone disturbs the mitochondrial redox homeostasis and activates the NRF2 signaling pathway in HepG2 cells. Free Radic. Biol. Med. 2020, 152, 216–226. [Google Scholar] [CrossRef]
- Soiberman, U.; Shai, D.; Loewenstein, A.; Barak, A. Macular Hole Surgery with Internal Limiting Membrane Peeling Facilitated by Membrane-Blue® versus Membrane-Blue-Dual®: A Retrospective Comparative Study. J. Ophthalmol. 2016, 2016, 1292735. [Google Scholar] [CrossRef] [Green Version]
- Cicinelli, M.V.; Marchese, A.; Bandello, F.; Coppola, M. Inner Retinal Layer and Outer Retinal Layer Findings after Macular Hole Surgery Assessed by means of Optical Coherence Tomography. J. Ophthalmol. 2019, 2019, 3821479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jindal, A.; Pathengay, A.; Mithal, K.; Chhablani, J.; Pappuru, R.R.; Flynn, H.W. Macular toxicity following brilliant blue G-assisted macular hole surgery—A report of three cases. Nepal. J. Ophthalmol. 2014, 6, 98–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penha, F.M.; Pons, M.; Costa Ede, P.; Rodrigues, E.B.; Maia, M.; Marin-Castaño, M.E.; Farah, M.E. Effect of vital dyes on retinal pigmented epithelial cell viability and apoptosis: Implications for chromovitrectomy. Ophthalmologica 2013, 230 (Suppl. S2), 41–50. [Google Scholar] [CrossRef] [Green Version]
- Yuen, D.; Gonder, J.; Proulx, A.; Liu, H.; Hutnik, C. Comparison of the in vitro safety of intraocular dyes using two retinal cell lines: A focus on brilliant blue G and indocyanine green. Am. J. Ophthalmol. 2009, 147, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Charles, S. Illumination and phototoxicity issues in vitreoretinal surgery. Retina 2008, 28, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Federico, O.; Anniken, B.J.; Carlos, M. Diffuse retinal pigment epithelium atrophy following pars plana vitrectomy for high myopic macular hole assisted by Brilliant Blue G: A case report. Am. J. Ophthalmol. Case Rep. 2021, 23, 101148. [Google Scholar] [CrossRef]
- Narayanan, R.; Kenney, M.C.; Kamjoo, S.; Trinh, T.-H.T.; Seigel, G.M.; Resende, G.P.; Kuppermann, B.D. Trypan blue: Effect on retinal pigment epithelial and neurosensory retinal cells. Investig. Ophthalmol. Vis. Sci. 2005, 46, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Golan, S.; Levi, R.; Entin-Meer, M.; Barak, A. The effects of vital dyes on retinal pigment epithelium cells in oxidative stress. Ophthalmic Res. 2014, 52, 147–150. [Google Scholar] [CrossRef]
- Agarwal, N. RGC-5 Cells. Investig. Opthalmology Vis. Sci. 2013, 54, 7884. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.; Opere, C.; Dash, A. Sustained-Release Delivery System of a Slow Hydrogen Sulfide Donor, GYY 4137, for Potential Application in Glaucoma. AAPS PharmSciTech 2017, 18, 2291–2302. [Google Scholar] [CrossRef]
- Sun, Y.; Xue, W.; Song, Z.; Huang, K.; Zheng, L. Restoration of Opa1-long isoform inhibits retinal injury-induced neurodegeneration. J. Mol. Med. 2016, 94, 335–346. [Google Scholar] [CrossRef]
- Krisnamoorthy, R.R.; Clark, A.F.; Daudt, D.; Vishwanatha, J.K.; Yorio, T. A forensic path to RGC-5 cell line identification: Lessons learned. Investig. Opthalmol. Vis. Sci. 2013, 54, 5712–5719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.; Liu, H.; Wu, Q.; Zhou, M. Scopoletin protects retinal ganglion cells 5 from high glucose-induced injury in a cellular model of diabetic retinopathy via ROS-dependent p38 and JNK signaling cascade. Cent. Eur. J. Immunol. 2022, 47, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, L.; Zhou, H.; Wu, M. Comparative effects of commonly used intraocular dyes on the viability of human retina Müller cells. Biomed. Pharmacother. 2020, 132, 110790. [Google Scholar] [CrossRef]
- Chalam, K.V.; Khetpal, V.; Rusovici, R.; Balaiya, S. A review: Role of ultraviolet radiation in age-related macular degeneration. Eye Contact Lens 2011, 37, 225–232. [Google Scholar] [CrossRef]
- Hsieh, F.C.; Hung, C.T.; Cheng, K.C.; Wu, C.Y.; Chen, Y.C.; Wu, Y.J.; Liu, W.; Chiu, C. Protective Effects of Lycium barbarum Extracts on UVB-Induced Damage in Human Retinal Pigment Epithelial Cells Accompanied by Attenuating ROS and DNA Damage. Oxid. Med. Cell Longev. 2018, 2018, 4814928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhou, X.; Kuang, X.; Long, C.; Liu, W.; Tang, Y.; Liu, H.; He, J.; Huang, Z.; Fan, Y.; et al. The inhibition of NOTCH2 reduces UVB-induced damage in retinal pigment epithelium cells. Mol. Med. Rep. 2017, 16, 730–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, E.Y.C.; Liu, P.K.; Wen, Y.T.; Quinn, P.M.; Levi, S.R.; Wang, N.K.; Tsai, R.K. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants 2021, 10, 1948. [Google Scholar] [CrossRef]
- Sano, R.; Reed, J.C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta 2013, 1833, 3460–3470. [Google Scholar] [CrossRef] [Green Version]
- Clementi, M.E.; Maulucci, G.; Bianchetti, G.; Pizzoferrato, M.; Sampaolese, B.; Tringali, G. Cytoprotective Effects of Punicalagin on Hydrogen-Peroxide-Mediated Oxidative Stress and Mitochondrial Dysfunction in Retinal Pigment Epithelium Cells. Antioxidants 2021, 10, 192. [Google Scholar] [CrossRef]
- Brown, E.E.; DeWeerd, A.J.; Ildefonso, C.J.; Lewin, A.S.; Ash, J.D. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biol. 2019, 24, 101201. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.Q.; Godley, B.F. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: A possible mechanism for RPE aging and age-related macular degeneration. Exp. Eye Res. 2003, 76, 397–403. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, K.; Xu, D.; Zhou, W.T.; Fang, W.Q.; Wan, Y.Y.; Yan, D.D.; Guo, M.Y.; Tao, J.X.; Zhou, W.C.; et al. Mitochondrial Fission Is Required for Blue Light-Induced Apoptosis and Mitophagy in Retinal Neuronal R28 Cells. Front. Mol. Neurosci. 2018, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Q.; Ren, Y.; Wang, X.; Cheng, H.; Yang, H.; Wang, B. Tetramethylpyrazine protects retinal ganglion cells against H2O2-induced damage via the microRNA-182/mitochondrial pathway. Int. J. Mol. Med. 2019, 44, 503–512. [Google Scholar] [CrossRef]
- Tao, J.X.; Zhou, W.C.; Zhu, X.G. Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina. Oxid. Med. Cell Longev. 2019, 2019, 6435364. [Google Scholar] [CrossRef] [Green Version]
- Christensen, U.C. Value of internal limiting membrane peeling in surgery for idiopathic macular hole and the correlation between function and retinal morphology. Acta Ophthalmol. 2009, 87, 1–23. [Google Scholar] [CrossRef]
- Sheidow, T.G.; Blinder, K.J.; Holekamp, N.; Joseph, D.; Shah, G.; Grand, M.G.; Thomas, M.A.; Bakal, J.; Sharma, S. Outcome results in macular hole surgery: An evaluation of internal limiting membrane peeling with and without indocyanine green. Ophthalmology 2003, 110, 1697–1701. [Google Scholar] [CrossRef]
- Romano, M.R.; Ilardi, G.; Ferrara, M.; Cennamo, G.; Parolini, B.; Mariotti, C.; Staibano, S.; Cennamo, G. Macular peeling-induced retinal damage: Clinical and histopathological evaluation after using different dyes. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1573–1580. [Google Scholar] [CrossRef]
- Rezaei Kanavi, M.; Soheilian, M. Histopathologic and electron microscopic features of internal limiting membranes in maculopathies of various etiologies. J. Ophthalmic Vis. Res. 2014, 9, 215–222. [Google Scholar]
- Li, Y.; Chen, Y.M.; Sun, M.M.; Guo, X.D.; Wang, Y.C.; Zhang, Z.Z. Inhibition on Apoptosis Induced by Elevated Hydrostatic Pressure in Retinal Ganglion Cell-5 via Laminin Upregulating β1-integrin/Focal Adhesion Kinase/Protein Kinase B Signaling Pathway. Chin. Med. J. 2016, 129, 976–983. [Google Scholar] [CrossRef]
- Sippl, C.; Tamm, E.R. What is the nature of the RGC-5 cell line? Adv. Exp. Med. Biol. 2014, 801, 145–154. [Google Scholar] [PubMed]
With PEG | Without PEG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | MBD1 | MBD2 | UVB | MBD1+ UVB | MBD2 + UVB | MBD1 | MBD2 | UVB | MBD1 + UVB | MBD2 + UVB | |
Ψ (%) | 100 | 105.6± 5.9 | 132.4 ± 18.8 | 54.8 ± 8.7 | 79.6 ± 3.8 | 90.8 ± 3.7 | 103.4 ± 1.7 | 116 ± 6.5 | 59.83 ± 5.4 | 70.4 ± 6.5 ** | 80.4 ± 6.4 * |
MitoROS (%) | 100 | 78 ± 4.5 | 82.17 ± 1.6 | 113 ± 12.1 | 77.2 ± 5.6 | 86.6 ± 5 | 75 ± 5.2 | 84.67 ± 5.5 | 113.8 ± 5.6 | 92.3 ± 2.2 ** | 84.7 ± 3.4 * |
Proliferation (%) | 1 | 1.32 ± 0.07 | 1.59 ± 0.09 | 0.634 ± 0.1 | 0.95 ± 0.03 | 1.22 ± 0.08 | 1.27 ± 0.08 | 1.56 ± 0.07 | 0.67 ± 0.08 | 1.01 ± 0.02 | 1.1 ± 0.04 |
Migration (%) | 1 | 2.24 ± 0.34 | 3.3 ± 0.48 | 0.47 ± 0.12 | 1.36 ± 0.15 | 1.78 ± 0.23 | 1.33± 0.2 a | 2.14 ± 0.37 b | 0.48 ± 0.15 | 0.95 ± 0.15 ** | 1.42 ± 0.17 * |
Annexin V (%) | 100 | 135.6 ± 9.45 | 96.2 ± 5.76 | 77.4 ± 6.22 | 138 ± 11.42 | 115.6 ± 6.58 ** | 96.8 ± 4.43 * |
With PEG | Without PEG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | MBD1 | MBD2 | UVB | MBD1+ UVB | MBD2 + UVB | MBD1 | MBD2 | UVB | MBD1 + UVB | MBD2 + UVB | |
Ψ (%) | 100 | 121.3± 13.3 | 147.8 ± 22.3 | 58.3 ± 7.8 | 82 ± 5.3 | 91.67 ± 4.13 | 113 ± 7.4 b | 125.6± 11.6 a | 57.86± 6.84 | 67.17 ± 6.61 * | 73.17 ± 7.63 * |
MitoROS(%) | 100 | 79 ± 1.78 | 71.6 ± 3 | 112.8 ± 11.92 | 82.8 ± 2.38 | 75.2 ± 2.68 | 84.8± 2.1 b | 81.14± 4.45 a | 113.8 ± 5.63 | 92.83 ± 2.78 ** | 84.67 ± 3.26 * |
Proliferation (%) | 1 | 1.08 ± 0.04 | 1.22 ± 0.04 | 0.67 ± 0.06 | 0.95 ± 0.045 | 0.98 ± 0.03 | 1.15 ± 0.11 | 1.25 ± 0.14 | 0.63± 0.047 | 0.78 ± 0.093 | 0.9 ± 0.073 |
Migration(%) | 1 | 2.1 ± 0.23 | 2.9 ± 0.18 | 0.46 ± 0.09 | 1.35 ± 0.27 | 2.06 ± 0.34 | 1.47± 0.24 b | 2.064 ± 0.3 a | 0.38 ± 0.14 | 0.85 ± 0.2 ** | 1.17 ± 0.37 * |
Annexin V(%) | 100 | 164.2 ± 5.84 | 108 ± 6.67 | 93.2 ± 7.39 | 165.4 ± 7.95 | 134.8 ± 16.6 ** | 120.2 ± 6.53 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossini, E.; Venkatesan, S.; Alkabes, M.; Toma, C.; de Cillà, S. Membrane Blue Dual Protects Retinal Pigment Epithelium Cells/Ganglion Cells—Like through Modulation of Mitochondria Function. Biomedicines 2022, 10, 2854. https://doi.org/10.3390/biomedicines10112854
Grossini E, Venkatesan S, Alkabes M, Toma C, de Cillà S. Membrane Blue Dual Protects Retinal Pigment Epithelium Cells/Ganglion Cells—Like through Modulation of Mitochondria Function. Biomedicines. 2022; 10(11):2854. https://doi.org/10.3390/biomedicines10112854
Chicago/Turabian StyleGrossini, Elena, Sakthipriyan Venkatesan, Micol Alkabes, Caterina Toma, and Stefano de Cillà. 2022. "Membrane Blue Dual Protects Retinal Pigment Epithelium Cells/Ganglion Cells—Like through Modulation of Mitochondria Function" Biomedicines 10, no. 11: 2854. https://doi.org/10.3390/biomedicines10112854
APA StyleGrossini, E., Venkatesan, S., Alkabes, M., Toma, C., & de Cillà, S. (2022). Membrane Blue Dual Protects Retinal Pigment Epithelium Cells/Ganglion Cells—Like through Modulation of Mitochondria Function. Biomedicines, 10(11), 2854. https://doi.org/10.3390/biomedicines10112854