A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms
Abstract
:1. Introduction
- A new hybrid ResNet with Transformer Encoder (TE) framework is proposed to automatically predict breast cancer from the X-ray mammographic datasets. The deep learning ResNet is used as a backbone network for deep feature extraction, while TE with multilayer perceptron (MLP) is used to classify breast cancer.
- A comprehensive computer-aided diagnosis (CAD) system is proposed to classify the breast cancer in two scenarios: binary classification (normal vs. abnormal) and multiple classification (Normal vs. Benign vs. Malignant).
- Three AI models of custom CNN, VGG16, and ResNet50 were used for performance comparison study with the proposed AI model in both binary and multi-class classification scenarios.
- An adaptive and automatic image processing segmentation triangle algorithm is proposed to create the adapted threshold for extracting Regions of Interest (ROIs) from the entire mammograms. The proposed algorithm leads a better segmented boundary region when compared to the conventional binary threshold segmentation.
- The augmentation processing is applied to increase the number of patches of the images to overcome the overfitting problems and create a large dataset that is enough for training and testing the proposed models.
- Four abnormal datasets were created with different patch sizes: 256 × 256, 400 × 400, and 512 × 512. The proposed models recorded the best results when using a larger patch size.
2. Related Works
2.1. Deep Learning Classification
2.2. Vision Transformer for Image Classification
3. Material and Methods
3.1. Data Acquisition and Image Collection
3.2. Data Preparation and Preprocessing
3.3. Patch Creation
- For normal patch extraction, the following producer steps were sequentially applied,
- Step 1: After applying the data preprocessing for each image collected from DDSM, the final segmented image became ready for creating a group of tiles.
- Step 2: A set of 256 × 256 tiles or patches was created from each image. The upper threshold, lower threshold, mean, and variance of the created tiles were calculated to ensure that such tiles have part of the segmented image and not mostly empty spaces.
- For abnormal benign and malignant patches extraction, the following producer steps were sequentially applied,
- Step 1: After applying data preprocessing for each image collected from CBIS-DDSM, the segmented image was ready for creating a group of tiles.
- Step 2: The original mammograms in the CBIS-DDSM dataset have cropped patches images for benign and malignant masses that were reviewed by radiologists. So, we used them directly to create slices of 512 × 512. We used 512 × 512 because the size of the cropped patches images is different from one to another, wherein some of them are smaller than this in size, while others are bigger.
- Step 3: If the size of the cropped patch is less than 512 × 512 pixels, we put this patch in a slice of 512 × 512 starting from (0,0), and then the zero padding procedure was automatically applied to maintain the desired fixed size of 512 × 512 pixels.
- Step 4: If the cropped patch is greater than 512 × 512 pixels, more than one slice was created starting from the left to right (horizontal direction) and from up to down (vertical direction). We performed this procedure to avoid any down-sampling for the generated abnormal patches.
- Step 5: Each slice was split into two 256 × 256 tiles.
3.4. Data Splitting
3.5. Transferring Patches
3.6. Data Augmentation
- Step 1: In order to enlarge the number of training set, new patches must be created by applying flip based on a NumPy function called ‘flip’. Two flips were applied vertically and horizontally [41] based on two returned values (1: perform flipping; 0: cancel flipping) from a NumPy function called binomial, which is responsible for drawing samples based on Binomial distribution [42]. The binomial distribution (BD) is calculated by,
- Step 2: After that, a rotation was applied around the origin using different angles: [5°, 10°, 15°, 20°].
3.7. The Suggested Deep Learning Models
3.8. The Custom CNN Model
3.9. AI-Based VGG16 Model
3.10. AI-Based ResNet50 Model
3.11. The Proposed Hybrid AI-Based ResNet and Transformer Encoder
3.12. Evaluation Metrics
3.13. Execution Environment
4. Experimental Results and Discussion
4.1. Scenario A: Binary Classification: Normal vs. Abnormal
4.2. Scenario B: Multi-Class Classification: Normal vs. Brnign vs. Malignant
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUROC | Area Under the Receiver Operating Characteristic Curve |
CAD | Computer-Aided Diagnosis |
CBIS-DDSM | Curated Breast Imaging Subset of the Digital Database for Screening Mammography |
CC | Cranio-Caudal |
CNN | Convolution Neural Network |
DDSM | Database for Screening Mammography |
DICOM | Digital Imaging and Communications in Medicine |
DM | Digital Mammograms |
KM | K-means |
MLO | Mediolateral Oblique |
MLP | Multiple Layer Perceptron |
ResNet | Residual Convolutional Network |
ROI | Regions of Interest |
SVM | Support Vector Machine |
TE | Transformer Encoder |
UMAP | Uniform Manifold Approximation and Projection |
VGG | Visual Geometry Group |
ViT | Vision Transformer |
YOLO | You Only Look Once |
References
- Al-Tam, R.M.; Narangale, S.M. Breast Cancer Detection and Diagnosis Using Machine Learning: A Survey. J. Sci. Res. 2021, 65, 265–285. [Google Scholar] [CrossRef]
- Al-Tam, R.M. Diversifying Medical Imaging of Breast Lesions. Mater’s Thesis, University of Algarve, Faro, Portugal, 2015. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Al-Antari, M.A.; Al-Masni, M.A.; Park, S.-U.; Park, J.; Metwally, M.K.; Kadah, Y.M.; Han, S.-M.; Kim, T.-S. An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. J. Med. Biol. Eng. 2018, 38, 443–456. [Google Scholar] [CrossRef]
- Siddiqui, M.K.J.; Anand, M.; Mehrotra, P.K.; Sarangi, R.; Mathur, N. Biomonitoring of organochlorines in women with benign and malignant breast disease. Environ. Res. 2005, 98, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Fusco, R.; Granata, V.; Maio, F.; Sansone, M.; Petrillo, A. Textural radiomic features and time-intensity curve data analysis by dynamic contrast-enhanced MRI for early prediction of breast cancer therapy response: Preliminary data. Eur. Radiol. Exp. 2020, 4, 8. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, N.; Liu, M.; Shi, Y.; Ma, H.; Dong, J.; Zhang, X.; Duan, S.; Wang, B.; Xie, H. Radiomic analysis on magnetic resonance diffusion weighted image in distinguishing triple-negative breast cancer from other subtypes: A feasibility study. Clin. Imaging 2021, 72, 136–141. [Google Scholar] [CrossRef]
- Militello, C.; Rundo, L.; Dimarco, M.; Orlando, A.; Woitek, R.; D’Angelo, I.; Russo, G.; Bartolotta, T.V. 3D DCE-MRI radiomic analysis for malignant lesion prediction in breast cancer patients. Acad. Radiol. 2022, 29, 830–840. [Google Scholar] [CrossRef]
- Al-Antari, M.A.; Han, S.-M.; Kim, T.-S. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Comput. Methods Programs Biomed. 2020, 196, 105584. [Google Scholar] [CrossRef]
- Hamed, G.; Marey, M.A.E.-R.; Amin, S.E.-S.; Tolba, M.F. The mass size effect on the breast cancer detection using 2-levels of evaluation. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 19–21 October 2020; pp. 324–335. [Google Scholar]
- Hamed, G.; Marey, M.; Amin, S.E.; Tolba, M.F. Automated Breast Cancer Detection and Classification in Full Field Digital Mammograms Using Two Full and Cropped Detection Paths Approach. IEEE Access 2021, 9, 116898–116913. [Google Scholar] [CrossRef]
- Aly, G.H.; Marey, M.; El-Sayed, S.A.; Tolba, M.F. YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms. Comput. Methods Programs Biomed. 2021, 200, 105823. [Google Scholar] [CrossRef]
- Al-Masni, M.A.; Al-Antari, M.A.; Park, J.-M.; Gi, G.; Kim, T.-Y.; Rivera, P.; Valarezo, E.; Choi, M.-T.; Han, S.-M.; Kim, T.-S. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput. Methods Programs Biomed. 2018, 157, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Tardy, M.; Mateus, D. Looking for abnormalities in mammograms with self-and weakly supervised reconstruction. IEEE Trans. Med. Imaging 2021, 40, 2711–2722. [Google Scholar] [CrossRef] [PubMed]
- Oza, P.; Sharma, P.; Patel, S.; Kumar, P. Deep convolutional neural networks for computer-aided breast cancer diagnostic: A survey. Neural Comput. Appl. 2022, 34, 1815–1836. [Google Scholar] [CrossRef]
- Kooi, T.; Litjens, G.; Van Ginneken, B.; Gubern-Mérida, A.; Sánchez, C.I.; Mann, R.; den Heeten, A.; Karssemeijer, N. Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 2017, 35, 303–312. [Google Scholar] [CrossRef]
- Xi, P.; Shu, C.; Goubran, R. Abnormality detection in mammography using deep convolutional neural networks. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar]
- Hou, R.; Peng, Y.; Grimm, L.J.; Ren, Y.; Mazurowski, M.; Marks, J.R.; King, L.M.; Maley, C.; Hwang, E.-S.S.; Lo, J.Y.-C. Anomaly Detection of Calcifications in Mammography Based on 11,000 Negative Cases. IEEE Trans. Biomed. Eng. 2021, 69, 1639–1650. [Google Scholar] [CrossRef]
- Melekoodappattu, J.G.; Dhas, A.S.; Kandathil, B.K.; Adarsh, K.S. Breast cancer detection in mammogram: Combining modified CNN and texture feature based approach. J. Ambient Intell. Humaniz. Comput. 2022, 1–10. [Google Scholar] [CrossRef]
- Pillai, A.; Nizam, A.; Joshee, M.; Pinto, A.; Chavan, S. Breast Cancer Detection in Mammograms Using Deep Learning. In Applied Information Processing Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 121–127. [Google Scholar]
- Mahmood, T.; Li, J.; Pei, Y.; Akhtar, F.; Rehman, M.U.; Wasti, S.H. Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach. PLoS ONE 2022, 17, e0263126. [Google Scholar] [CrossRef]
- Sannasi Chakravarthy, S.R.; Bharanidharan, N.; Rajaguru, H. Multi-Deep CNN based Experimentations for Early Diagnosis of Breast Cancer. IETE J. Res. 2022, 1–16. [Google Scholar] [CrossRef]
- Gaona, Y.J.; Lakshminarayanan, V. DenseNet for Breast Tumor Classification in Mammographic Images. In Proceedings of the Bioengineering and Biomedical Signal and Image Processing: First International Conference, BIOMESIP 2021, Meloneras, Gran Canaria, Spain, 19–21 July 2021; Volume 12940, p. 166. [Google Scholar]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 2019, 9, 12495. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Singh, B.K.; Banchhor, S.K.; Verma, K. Segmentation of malignant tumours in mammogram images: A hybrid approach using convolutional neural networks and connected component analysis. Expert Syst. 2022, 39, e12826. [Google Scholar] [CrossRef]
- Samee, N.A.; Atteia, G.; Meshoul, S.; Al-antari, M.A.; Kadah, Y.M. Deep Learning Cascaded Feature Selection Framework for Breast Cancer Classification: Hybrid CNN with Univariate-Based Approach. Mathematics 2022, 10, 3631. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. Available online: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (accessed on 30 October 2022).
- Gheflati, B.; Rivaz, H. Vision transformers for classification of breast ultrasound images. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine/Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 480–483. [Google Scholar]
- Qu, X.; Lu, H.; Tang, W.; Wang, S.; Zheng, D.; Hou, Y.; Jiang, J. A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images. Med. Phys. 2022, 49, 5787–5798. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, R.; Cui, N.; Li, Q.; Yuan, F.; Xiao, Z. Semi-supervised vision transformer with adaptive token sampling for breast cancer classification. Front. Pharmacol. 2022, 13, 929755. [Google Scholar] [CrossRef] [PubMed]
- Heath, M.; Bowyer, K.; Kopans, D.; Moore, R.; Kegelmeyer, W.P. Current Status of the Digital Database for Screening Mammography. In Digital Mammography. Computational Imaging and Vision; Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L., Eds.; Springer: Dordrecht, The Netherlands, 1998; Volume 13. [Google Scholar] [CrossRef]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Al-Antari, M.A.; Al-Masni, M.A.; Choi, M.-T.; Han, S.-M.; Kim, T.-S. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int. J. Med. Inform. 2018, 117, 44–54. [Google Scholar] [CrossRef]
- Lee, R.S.; Gimenez, F.; Hoogi, A.; Miyake, K.K.; Gorovoy, M.; Rubin, D.L. A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 2017, 4, 170177. [Google Scholar] [CrossRef] [Green Version]
- Inthavong, K.; Singh, N.; Wong, E.; Tu, J. List of Useful Computational Software. In Clinical and Biomedical Engineering in the Human Nose; Springer: Berlin/Heidelberg, Germany, 2021; p. 301. [Google Scholar]
- Kabachinski, J. TIFF, GIF, and PNG: Get the picture? Biomed. Instrum. Technol. 2007, 41, 297–300. [Google Scholar] [CrossRef]
- Tan, L.K. Image file formats. Biomed. Imaging Interv. J. 2006, 2, e6. [Google Scholar] [CrossRef]
- Mordvintsev, A.; Abid, K. Opencv-Python Tutorials Documentation. Obtenido. 2014. Available online: https://media.readthedocs.org/pdf/opencv-python-tutroals/latest/opencv-python-tutroals.pdf (accessed on 3 July 2022).
- OpenCV: Image Thresholding. 2022. Available online: https://docs.opencv.org/4.x/d7/dd0/tutorial_js_thresholding.html (accessed on 30 October 2022).
- Villán, A.F. Mastering OpenCV 4 with Python: A Practical Guide Covering Topics from Image Processing, Augmented Reality to Deep Learning with OpenCV 4 and Python 3.7; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Yu, X.; Kang, C.; Guttery, D.S.; Kadry, S.; Chen, Y.; Zhang, Y.-D. ResNet-SCDA-50 for breast abnormality classification. IEEE/ACM Trans. Comput. Biol. Bioinforma. 2020, 18, 94–102. [Google Scholar] [CrossRef]
- Weisstein, E.W. Binomial Distribution. 2002. Available online: https//mathworld.wolfram.com/ (accessed on 10 July 2022).
- Okewu, E.; Misra, S.; Lius, F.-S. Parameter tuning using adaptive moment estimation in deep learning neural networks. In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 1–4 July 2020; pp. 261–272. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Ibrahem, H.; Salem, A.; Kang, H.-S. RT-ViT: Real-Time Monocular Depth Estimation Using Lightweight Vision Transformers. Sensors 2022, 22, 3849. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Samee, N.A.; Alhussan, A.A.; Ghoneim, V.F.; Atteia, G.; Alkanhel, R.; Al-Antari, M.A.; Kadah, Y.M. A Hybrid Deep Transfer Learning of CNN-Based LR-PCA for Breast Lesion Diagnosis via Medical Breast Mammograms. Sensors 2022, 22, 4938. [Google Scholar] [CrossRef]
- Goebel, R.; Chander, A.; Holzinger, K.; Lecue, F.; Akata, Z.; Stumpf, S.; Kieseberg, P.; Holzinger, A. Explainable AI: The new 42? In Proceedings of the International cross-domain conference for machine learning and knowledge extraction, Hamburg, Germany, 27–30 August 2018; pp. 295–303. [Google Scholar]
- Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Müller, K.-R. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer Nature: Berlin/Heidelberg, Germany, 2019; Volume 11700. [Google Scholar]
- Ukwuoma, C.C.; Qin, Z.; Bin Heyat, M.B.; Akhtar, F.; Bamisile, O.; Muad, A.Y.; Addo, D.; Al-Antari, M.A. A Hybrid Explainable Ensemble Transformer Encoder for Pneumonia Identification from Chest X-ray Images. J. Adv. Res. 2022; in press. [Google Scholar]
- Li, L.; Fan, Y.; Tse, M.; Lin, K.-Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [Google Scholar] [CrossRef]
Data Splitting | Normal | Abnormal |
---|---|---|
Training (80%) | 480 | 713 |
Validation (10%) | 60 | 90 |
Testing (10%) | 60 | 89 |
Total Patient Number | 600 | 892 |
Data Splitting | Normal | Benign | Malignant |
---|---|---|---|
Training (80%) | 480 | 345 | 368 |
Validation (10%) | 60 | 43 | 47 |
Testing (10%) | 60 | 43 | 46 |
Total Patient Number | 600 | 431 | 461 |
Dataset No. | Data Splitting | Normal | Benign (B)/Malignant (M) |
---|---|---|---|
DataSet 1 | Training (~80.31%) | 7116 | 5511 (B = 2865/M = 2646) |
Validation (~9.88%) | 876 | 733 (B = 370/M = 363) | |
Testing (~9.79%) | 868 | 686 (B = 380/M = 306) | |
Total | 8860 | 6930 |
Dataset No | Data Splitting | Normal | Benign | Malignant |
---|---|---|---|---|
DataSet 2 | Training | 7116 | 7116 | 7116 |
Validation | 876 | 370 | 363 | |
Testing | 868 | 380 | 306 | |
Total | 8860 | 7866 | 7785 |
Dataset No | Data Splitting | Normal | Benign | Malignant |
---|---|---|---|---|
DataSet 3 | Training | 7116 | 1187 | 1372 |
Validation | 876 | 189 | 177 | |
Testing | 868 | 166 | 147 | |
Total | 8860 | 1542 | 1696 | |
DataSet 4 | Training | 939 | 895 | 938 |
Validation | 219 | 119 | 114 | |
Testing | 217 | 126 | 98 | |
Total | 1375 | 1140 | 1150 |
Layer | Output Shape | Parameters | Details |
---|---|---|---|
conv2d | (256, 256, 32) | 320 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization | (256, 256, 32) | 128 | - |
conv2d_1 | (256, 256, 32) | 9248 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_1 | (256, 256, 32) | 128 | - |
conv2d_2 | (256, 256, 32) | 9248 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_2 | (256, 256, 32) | 128 | - |
max_pooling2d | (85, 85, 32) | 0 | Max pooling with 3 × 3 |
Dropout | (85, 85, 32) | 0 | Dropout rate is 0.25 |
conv2d_3 | (85, 85, 64) | 18,496 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_3 | (85, 85, 64) | 256 | - |
conv2d_4 | (85, 85, 64) | 36,928 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_4 | (85, 85, 64) | 256 | - |
conv2d_5 | (85, 85, 64) | 36,928 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_5 | (85, 85, 64) | 256 | - |
max_pooling2d_1 | (28, 28, 64) | 0 | Max pooling with 3 × 3 |
dropout_1 | (28, 28, 64) | 0 | Dropout rate is 0.25 |
conv2d_6 | (28, 28, 128) | 73,856 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_6 | (28, 28, 128) | 512 | - |
conv2d_7 | (28, 28, 128) | 147,584 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_7 | (28, 28, 128) | 512 | - |
conv2d_8 | (28, 28, 128) | 147,584 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_8 | (28, 28, 128) | 512 | - |
max_pooling2d_2 | (9, 9, 128) | 0 | Max pooling with 3 × 3 |
dropout_2 | (9, 9, 128) | 0 | Dropout rate is 0.25 |
conv2d_9 | (9, 9, 256) | 295,168 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_9 | (9, 9, 256) | 1024 | - |
conv2d_10 | (9, 9, 256) | 590,080 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_10 | (9, 9, 256) | 1024 | - |
conv2d_11 | (9, 9, 256) | 590,080 | 3 × 3 filter, ReLU, ‘same’, ‘he_uniform’ |
batch_normalization_11 | (9, 9, 256) | 1024 | - |
max_pooling2d_3 | (3, 3, 256) | 0 | Max pooling with 3 × 3 |
dropout_3 | (3, 3, 256) | 0 | Dropout rate is 0.25 |
flatten | (2304) | 0 | - |
dense | (512) | 1,180,160 | - |
batch_normalization_12 | (512) | 2048 | - |
dense_1 | (512) | 262,656 | - |
batch_normalization_13 | (512) | 2048 | - |
dropout_4 | (512) | 0 | - |
dense_2 | (2) | 1026 | - |
Total parameters | 3,409,218 | - | |
Trainable parameters | 3,404,290 | - | |
Non-trainable parameters | 4928 | - |
AI Model | Fine-Tune Layers | Class | Evaluation Measurements (%) | |||||
---|---|---|---|---|---|---|---|---|
PRE | SE | F1-Score | Val. Acc. | Test Acc. | AUC | |||
VGG16 | 17 | Normal | 99.60 | 98.60 | 98.80 | 98.64 | 98.60 | 98.67 |
Abnormal | 98.40 | 98.60 | 98.20 | |||||
ResNet50 | 143 | Normal | 99.60 | 100.0 | 99.80 | 99.83 | 99.76 | 99.81 |
Abnormal | 100.0 | 99.60 | 99.80 | |||||
Custom CNN | Trained from scratch | Normal | 99.20 | 99.00 | 99.20 | 99.17 | 99.25 | 99.28 |
Abnormal | 98.99 | 99.10 | 99.19 | |||||
The Proposed Hybrid AI Model | 143 | Normal | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Abnormal | 100.0 | 100.0 | 100.0 |
Model | Fine-Tuned Layers | Class | PRE | SE | F1-Score | Test Acc. | AUC |
---|---|---|---|---|---|---|---|
VGG16 | 17 | Normal | 99.62 | 98.65 | 98.84 | 98.61 | 98.68 |
Abnormal | 98.40 | 98.68 | 98.26 | ||||
ResNet50 | 143 | Normal | 99.69 | 99.81 | 99.89 | 99.83 | 99.89 |
Abnormal | 100.0 | 99.69 | 99.82 | ||||
Custom CNN | Trained from scratch | Normal | 99.27 | 99.05 | 99.26 | 99.20 | 99.26 |
Abnormal | 98.84 | 99.12 | 99.30 | ||||
The proposed hybrid AI Model | 143 | Normal | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Abnormal | 100.0 | 100.0 | 100.0 |
Models | Class | PRE | SE | F1-Score | Val. Acc. | Test Acc. |
---|---|---|---|---|---|---|
VGG16 | Benign | 60.10 | 65.70 | 62.31 | 87.45 | 87.75 |
Malignant | 63.04 | 54.00 | 58.20 | |||
Normal | 99.02 | 100.0 | 99.00 | |||
ResNet50 | Benign | 80.11 | 59.50 | 67.00 | 91.00 | 90.86 |
Malignant | 54.90 | 78.51 | 65.00 | |||
Normal | 100.0 | 100.0 | 100.0 | |||
Custom CNN | Benign | 59.10 | 65.21 | 61.00 | 87.03 | 87.20 |
Malignant | 63.10 | 52.23 | 57.06 | |||
Normal | 98.02 | 100.0 | 99.60 |
Models | Dataset | Class | PRE | Recall | F1-Score | Val. Acc. | Test Acc. |
---|---|---|---|---|---|---|---|
VGG16 | Dataset 3 | Benign | 80.11 | 59.01 | 68.03 | 90.75 | 90.25 |
Malignant | 55.89 | 78.00 | 65.00 | ||||
Normal | 100.0 | 100.0 | 100.0 | ||||
ResNet50 | Benign | 87.12 | 69.98 | 78.00 | 94.10 | 93.33 | |
Malignant | 65.89 | 83.12 | 73.02 | ||||
Normal | 100.0 | 100.0 | 100.0 | ||||
Custom CNN | Benign | 79.10 | 58.00 | 67.10 | 90.00 | 89.97 | |
Malignant | 53.90 | 76.00 | 62.90 | ||||
Normal | 100.0 | 100.0 | 100.0 | ||||
ResNet50 | Dataset 4 | Benign | 83.22 | 91.80 | 87.00 | 94.02 | 92.19 |
Malignant | 91.10 | 80.87 | 86.12 | ||||
Normal | 100.0 | 100.0 | 100.0 | ||||
The Proposed Hybrid AI Model | Benign | 93.11 | 85.12 | 89.02 | 96.03 | 95.60 | |
Malignant | 86.00 | 93.55 | 90.11 | ||||
Normal | 100.0 | 100.0 | 100.0 |
Model | Fine-Tuned Layers | Fold | Class | PRE | SE | F1-Score | Acc. | AUC |
---|---|---|---|---|---|---|---|---|
The Proposed Hybrid AI Model | 123 | Fold 1 | Benign | 93.00 | 85.89 | 89.13 | 96.03 | 96.04 |
Malignant | 86.10 | 93.95 | 90.20 | |||||
Normal | 100.0 | 100.0 | 100.0 | |||||
Fold 2 | Benign | 86.22 | 95.11 | 90.02 | 95.84 | 96.01 | ||
Malignant | 94.40 | 84.04 | 89.12 | |||||
Normal | 100.0 | 100.0 | 100.0 | |||||
Fold 3 | Benign | 85.90 | 91.85 | 89.11 | 95.06 | 95.12 | ||
Malignant | 91.00 | 83.97 | 86.98 | |||||
Normal | 100.0 | 100.0 | 100.0 | |||||
Fold 4 | Benign | 85.97 | 99.09 | 92.00 | 96.00 | 96.06 | ||
Malignant | 98.70 | 84.92 | 90.94 | |||||
Normal | 100.0 | 100.0 | 100.0 | |||||
Fold 5 | Benign | 89.06 | 94.11 | 92.00 | 96.10 | 96.00 | ||
Malignant | 94.00 | 89.00 | 91.12 | |||||
Normal | 100.0 | 100.0 | 100.0 | |||||
Avg. (%) | Benign | 88.03 | 93.21 | 90.45 | 95.80 | 95.84 | ||
Malignant | 92.84 | 87.17 | 89.67 | |||||
Normal | 100.0 | 100.0 | 100.0 |
Reference | Dataset | Prediction Classes | Deep Learning Method | Acc. (%) |
---|---|---|---|---|
Al-antari et al. (2018) [9] | DDSM | Benign/Malignant | YOLOV2 | 97.50 |
Melekoodappattu et al. (2022) [19] | DDSM | Normal/Abnormal | CNN model | 98.3 (SE) and 97.9 (Acc.) |
Shen et al. (2019), [24] | CBIS-DDSM | Cancer/Normal; Background/Malignant Mass/Benign Mass/Malignant Calcification/Benign Calcification | Many CNN models | 91.00 (AUC), 86.1 (SE), and 80.1 (PRE) |
Roy et al. (2022), [25] | DDSM | Malignant Detection | CNN with connected component analysis (CCA) | 90.00 |
Xi et al. (2018), [17] | CBIS-DDSM | Calcification/Mass | CNN model | 92.53%. |
Our | * DDSM and CBIS-DDSM | Scenario A: Normal/Abnormal | The proposed hybrid ResNet50 and ViT model | 100 |
Scenario B: Normal/Benign/Malignant | 95.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Tam, R.M.; Al-Hejri, A.M.; Narangale, S.M.; Samee, N.A.; Mahmoud, N.F.; Al-masni, M.A.; Al-antari, M.A. A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms. Biomedicines 2022, 10, 2971. https://doi.org/10.3390/biomedicines10112971
Al-Tam RM, Al-Hejri AM, Narangale SM, Samee NA, Mahmoud NF, Al-masni MA, Al-antari MA. A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms. Biomedicines. 2022; 10(11):2971. https://doi.org/10.3390/biomedicines10112971
Chicago/Turabian StyleAl-Tam, Riyadh M., Aymen M. Al-Hejri, Sachin M. Narangale, Nagwan Abdel Samee, Noha F. Mahmoud, Mohammed A. Al-masni, and Mugahed A. Al-antari. 2022. "A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms" Biomedicines 10, no. 11: 2971. https://doi.org/10.3390/biomedicines10112971
APA StyleAl-Tam, R. M., Al-Hejri, A. M., Narangale, S. M., Samee, N. A., Mahmoud, N. F., Al-masni, M. A., & Al-antari, M. A. (2022). A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms. Biomedicines, 10(11), 2971. https://doi.org/10.3390/biomedicines10112971